【BZOJ】2982: combination(lucas定理+乘法逆元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2982
少加了特判n<m return 0就wa了QAQ
lucas定理:C(n, m)%p=(C(n%p, m%p)*C(n/p, m/p))%p
等英语好一点去wiki看一下证明吧QAQhttp://en.wikipedia.org/wiki/Lucas%27_theorem
然后这是网上搜到的关于lucas的一些内容
首先给出这个Lucas定理:
A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)
这个定理的证明不是很简单,我一直想找个很好的张明,但是,没找到,昨天看到了一个解题报告,基本上可以说明白这个Lucas定理是怎么回事了,具体的是说:
以求解n! % p为例,把n分段,每p个一段,每一段求的结果是一样的。但是需要单独处理每一段的末尾p, 2p, ...,把p提取出来,会发现剩下的数正好又是(n / p)!,相当于划归成了一个子问题,这样递归求解即可。
这个是单独处理n!的情况,当然C(n,m)就是n!/(m!*(n-m)!),每一个阶乘都用上面的方法处理的话,就是Lucas定理了,注意这儿的p是素数是有必要的。
Lucas最大的数据处理能力是p在10^5左右,不能再大了,hdu 3037就是10^5级别的!
对于大组合数取模,n,m不大于10^5的话,用逆元的方法,可以解决。对于n,m大于10^5的话,那么要求p<10^5,这样就是Lucas定理了,将n,m转化到10^5以内解。
然后左边暴力加逆元就行了,右边就是lucas。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int MD=10007;
int mpow(int a, int b) {
int ret=1;
for(; b; b>>=1, a=(a*a)%MD) if(b&1) ret=(ret*a)%MD;
return ret;
}
int getc(int n, int m) {
if(n<m) return 0;
int up=1, down=1;
for1(i, m+1, n) up=(up*i)%MD;
for1(i, 1, n-m) down=(down*i)%MD;
return (up*mpow(down, MD-2))%MD;
}
int lucas(int n, int m) {
return m?(getc(n%MD, m%MD)*lucas(n/MD, m/MD))%MD:1;
} int main() {
int t=getint();
while(t--) {
int n=getint(), m=getint();
printf("%d\n", lucas(n, m));
}
return 0;
}
Description
Input
Output
Sample Input
5 1
5 2
7 3
4 2
Sample Output
10
35
6
HINT
Source
【BZOJ】2982: combination(lucas定理+乘法逆元)的更多相关文章
- ZOJ 3557 & BZOJ 2982 combination[Lucas定理]
How Many Sets II Time Limit: 2 Seconds Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...
- BZOJ 2982 combination Lucas定理
题目大意:发上来就过不了审核了--总之大意就是求C(n,m) mod 10007 m,n∈[1,2*10^8] 卢卡斯定理:C(n,m)=C(n%p,m%p)*C(n/p,m/p) mod p 要求p ...
- bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)
Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
- bzoj 2982 combination——lucas模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982 明明是lucas定理裸题…… 非常需要注意C( )里 if ( n<m ) r ...
- BZOJ 2982: combination( lucas )
lucas裸题. C(m,n) = C(m/p,n/p)*C(m%p,n%p). ----------------------------------------------------------- ...
- BZOJ 2982: combination Lucas模板题
Code: #include<bits/stdc++.h> #define ll long long #define maxn 1000003 using namespace std; c ...
- hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)
Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0) 每 ...
- bzoj2982: combination(lucas定理板子)
2982: combination Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 664 Solved: 397[Submit][Status][Di ...
随机推荐
- attributes vs properties --记于jquery attr不能正确更新input的value值后
最近做的前端页面是个单页面应用,需要经常给个input赋值什么的. 我常用的方式是$('#id').attr('value','XXXX'),一直可以正常使用.今天突然发现一个问题,某个要赋值的inp ...
- Android 如何添加一个新的时区
前言 欢迎大家我分享和推荐好用的代码段~~ 声明 欢迎转载,但请保留文章原始出处: CSDN:http://www.csdn.net ...
- 镜像上传和Dockerfile
一.镜像上传 1.在https://hub.docker.com 注册一个账号 2.创建一个仓库 3.取到containerID #docker ps 4.commit容器 #docker commi ...
- 用rz,sz命令在windows和linux之间传输文件(转)
转自http://www.linuxmine.com/178.html有很多人没有听说过ZModem协议,更不知道有rz/sz这样方便的工具: 下面一段是从SecureCRT的帮助中copy的: ZM ...
- STL源码剖析(算法)
STL中算法是基于迭代器来实现的. 有了容器中迭代器的实现(对operator*.operator++等的重载),STL中大部分算法实现就显得很简单了. 先看一例关于find算法的实现: templa ...
- 【服务器时间修改为东八区】包括Apache2和mysql
1.服务器Apache时间修改,可通过修改php.ini进行修改 所以就深入了解了一下, 发现Apache(PHP)的服务器时间时区默认为UTC(Coordinated UniversalTime 世 ...
- Oracle SQL Developer出现错误 【ora-28002:the password will expire within 7 days】的解决办法
启动 Oracle SQL Developer的时候,点击用户system进行连接并输入密码后(下图左),会出现(下图右)提示信息: 即:[ora-28002:the password will ex ...
- Mutex 进程间互斥
学习Mutex的心得,不一定对,先记录一下. 同步技术分为两大类,锁定和信号同步. 锁定分为:Lock.Monitor 信号同步分为:AutoResetEvent.ManualResetEvent.S ...
- 什么是SQL注入式攻击?
什么是SQL注入式攻击? 所谓SQL注入式攻击,就是攻击者把SQL命令插入到Web表单的输入域或页面请求的查询字符串,欺骗服务器执行恶意的SQL命令.在某些表单中,用户输入的内容直接用来构造(或者影响 ...
- 分布式协调服务ZooKeeper工作原理
分布式协调服务ZooKeeper工作原理 原创 2016-02-19 杜亦舒 性能与架构 性能与架构 性能与架构 微信号 yogoup 功能介绍 网站性能提升与架构设计 大数据处理框架Hadoop.R ...