【算法】树型DP+期望DP

【题意】一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态?

【题解】引用自:【BZOJ3566】【SHOI2014】概率充电器 树形DP 概率DP by 空灰冰魂

最大的难点在于计算每个点充电期望时,两个节点各自的期望都会影响对方的期望。

所以考虑转化对象,改为求每个节点充不上电的期望,充不上电就不用考虑两者的相互影响。

fi表示结点i由子结点和自身充不上电的概率

gi表示结点i由父结点充不上电的概率

第一次DFS

hi表示结点i对父亲贡献的概率

fi=(1-qi)*∏h[son[i]]

hi=fi+(1-fi)*(1-pi)  pi为i到父亲的导线通电概率

☆两者发生其一用概率加法,多者都必须发生用概率乘法,P(A+B)=P(A)+P(B)-P(AB)注意去除交集。

第二次DFS

当前结点x,父亲结点y。

t表示父亲y对结点x的贡献。

t=gy*(fy/hx)  注意hx为0的情况(除0)

gx=t+(1-t)*(1-pi)  pi为x到y的导线概率

最终答案:ans=Σ(1-fi*gi)  因为概率和期望都是0~1,所以一样。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
struct edge{int v,from;double p;}e[maxn*];
int n,first[maxn],tot;
double q[maxn],f[maxn],g[maxn],h[maxn],fw[maxn];
void insert(int u,int v,double w)
{tot++;e[tot].v=v;e[tot].p=w;e[tot].from=first[u];first[u]=tot;}
void dfs1(int x,int fa)
{
f[x]=-q[x];
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa)
{
dfs1(e[i].v,x);
f[x]*=h[e[i].v];
}else fw[x]=e[i].p;
h[x]=f[x]+(-f[x])*(-fw[x]);
}
void dfs2(int x,int y)
{
double t;
if(!h[x])t=;else t=g[y]*f[y]/h[x];
g[x]=t+(-t)*(-fw[x]);
for(int i=first[x];i;i=e[i].from)if(e[i].v!=y)dfs2(e[i].v,x);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
insert(u,v,1.0*w/);
insert(v,u,1.0*w/);
}
for(int i=;i<=n;i++){int u;scanf("%d",&u);q[i]=1.0*u/;}
dfs1(,);
dfs2(,);
double ans=;
for(int i=;i<=n;i++)ans+=-f[i]*g[i];
printf("%.6lf",ans);
return ;
}

【BZOJ】3566: [SHOI2014]概率充电器的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  4. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  5. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  6. bzoj 3566 [SHOI2014]概率充电器——树型

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...

  7. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  8. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  9. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  10. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. hustoj题目标准xml格式

    具体格式可见google code. 分析了一下发现像<time_limit></time_limit><memory_limit></memory_limi ...

  2. TCP系列38—拥塞控制—1、概述

    在本篇中我们继续上一篇文章wireshark的示例讲解,上一篇介绍了一个综合示例后,本篇介绍一些简单的示例,在读本篇前建议先把上一篇读完,为了节省篇幅,本篇只针对一些特殊的场景点报文进行讲解,不会像上 ...

  3. Qt快速入门学习笔记(画图篇)

    1.Qt中提供了强大的2D绘图系统,可以使用相同的API在屏幕和绘图设备上进行绘制,它主要基于QPainter.QPaintDevice和QPaintEngine这三个类.其中QPainter用来执行 ...

  4. Qt——树结点的搜索

    一.Qt中的树 平时我们经常使用树的结构来组织和展示数据,比如文件系统等—— 在Qt中,我们可以使用Qt提供的便捷的QTreeWidget类,利用该类的接口,轻松地将已有数据显示在树中. 除此之外,还 ...

  5. openstack中间件message queue 与memcached环境部署

    为什么要安装中间件 组件间的通信使用的是REST API 而组件内部之间的通信则是使用的中间件 首先登陆openstack的官网查看官方文档 www.openstack.org 应为在部署一个架构之前 ...

  6. Linq的模糊查询(包含精确模糊查询)

    目录: 1.判断是否为空或者null 2.普通包含模糊查询 1)以某字符串开头的模糊查询 2)以某字符串结尾的模糊查询 3)包含某字符串的模糊查询 3.精确到字符串对应位数字符的模糊查询(*重点) l ...

  7. html的body内标签之input系列2

    一,input系列:name属性用于让后台拿数据.value 只是在屏幕上的显示. 1. input type='text' name='query' value="张三"(相当于 ...

  8. 洛谷3690:【模板】Link Cut Tree——题解

    https://www.luogu.org/problemnew/show/P3690 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...

  9. nowcoder OI 周赛 最后的晚餐(dinner) 解题报告

    最后的晚餐(dinner) 链接: https://www.nowcoder.com/acm/contest/219/B 来源:牛客网 题目描述 \(\tt{**YZ}\)(已被和谐)的食堂实在是太挤 ...

  10. 算法学习 拓扑排序(TopSort)

    拓扑排序 一.基本概念 在一个有向无环图(Directed Acyclic Graph, DAG)中,规定< u,v > 表示一条由u指向v的的有向边.要求对所有的节点排序,使得每一条有向 ...