[洛谷P1822] 魔法指纹
洛谷题目连接:魔法指纹
题目描述
对于任意一个至少两位的正整数n,按如下方式定义magic(n):将n按十进制顺序写下来,依次对相邻两个数写下差的绝对值。这样,得到了一个新数,去掉前导0,则定义为magic(n)。若n为一位数,则magic(n)=n。
例如:magic(5913)=482,magic(1198)=081=81,magic(666)=00=0。
对任意一个数n,序列n,magic(n),magic(magic(n)),…迟早会变成一个一位数。最后的这个值称为数n的magic指纹。
例如,对于n=5913,我们得到序列:5913,482,46,2。所以5913的magic指纹为2。
若一个数的magic指纹为7,则认为这个数是个幸运数。
现在,给定A,B,计算出[A,B]中有多少个数是幸运数。
输入输出格式
输入格式:
输入两行,每行一个数。第一行是A,第二行表示B。
输出格式:
输出[A,B]中有多少个数是幸运数。
输入输出样例
输入样例#1:
1
9
输出样例#1:
1
说明
数据范围:
对30%数据,B≤10000。
对100%数据,0<A≤B≤1,000,000,000。
一句话题意: 根据描述的方法来转换数字,最后转换到只剩下个位的时候判断这个数字是否能计入答案.
题解: 首先看这数据范围,10个亿??这显然是一个玄学的复杂度.我们先考虑如何暴力来算.
- 最朴素的算法,直接枚举\(a\)~\(b\)的每一个数字验证,复杂度\(O(n*len)\),\(len\)为数字最大位数,也就是10.
- 考虑优化一下暴力,加上一个记忆化搜索, 复杂度\(O(n*k)\), k是一个小于等于10的常数.
显然如果要枚举的话,得到的复杂度至少也是\(O(n)\)的,所以才说这个小于\(O(n)\)的复杂度很玄学,所以我们还得再优化.
正解:分块+打表
可以考虑直接将整块内的答案通过另一个程序打出来,然后暴力统计不在整块内的,直接加整块内的答案.
打表的话就直接用一个什么暴力算一下就可以了.
#include<bits/stdc++.h>
using namespace std;
int block;
int n, num[20], ans[40000] = {/*这里实在是太多了就不贴了*/};
int magic(int x){
if(x < 10) return x == 7 ? 1 : -1;
int cnt = 0, res = 0;
for(;x;x/=10) num[++cnt] = x%10;
for(int i=1;i<=cnt/2;i++) swap(num[i], num[cnt-i+1]);
for(int i=2;i<=cnt;i++) res = res*10+abs(num[i]-num[i-1]);
return magic(res);
}
int B(int pos){return (pos-1)/block+1;}//计算一个位置属于哪个块
int main(){
//freopen("data.in", "r", stdin);
//freopen("zuoti.out", "w", stdout);
int a, b, res = 0; cin >> a >> b;
block = 31662+1;//对10亿开根的结果
for(int i=a;i<=min(b, B(a)*block);i++)
if(magic(i) == 1) res++;
for(int i=B(a)+1;i<=B(b)-1;i++) res += ans[i];
for(int i=(B(b)-1)*block+1;i<=b && B(a) != B(b);i++)
if(magic(i) == 1) res++;
printf("%d\n", res);
return 0;
}
[洛谷P1822] 魔法指纹的更多相关文章
- 洛谷P1822 魔法指纹 【分块打表】
题目 对于任意一个至少两位的正整数n,按如下方式定义magic(n):将n按十进制顺序写下来,依次对相邻两个数写下差的绝对值.这样,得到了一个新数,去掉前导0,则定义为magic(n).若n为一位数, ...
- 洛谷 U87561 魔法月饼
洛谷 U87561 魔法月饼 洛谷传送门 题目背景 \(9102\)年的中秋节注定与往年不同...因为在\(9102\)年的中秋节前夕,\(Seaway\)被告知今年的中秋节要新出一款月饼--魔法月饼 ...
- 洛谷 P1583 魔法照片
P1583 魔法照片 题目描述 一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初 ...
- 洛谷—— P2387 魔法森林
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...
- P1822 魔法指纹
一道放在分块训练中的分块打表屑题 看了神NaCly_Fish的题解学了间隔打表(话说这么屑的东西有什么学的必要吗) 内容大多摘自大佬的题解 1,答案可递推,才适合间隔打表 什么叫可递推呢?假设f[n] ...
- 洛谷 P1583魔法照片 & P1051谁拿了最多奖学金 & P1093奖学金
题目:https://www.luogu.org/problemnew/show/P1583 思路:sort sort sort //#include<bits/stdc++.h> #in ...
- 洛谷 P1583 魔法照片【二级结构体排序】
题目描述 一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初始权值从大到小进行排序 ...
- (水题)洛谷 - P1583 - 魔法照片
https://www.luogu.org/problemnew/show/P1583 设计一个strcut cmp用来比较,就可以了. #include<bits/stdc++.h> u ...
- 洛谷P1583 魔法照片【模拟+排序】
一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初始权值从大到小进行排序,每人就有 ...
随机推荐
- iscroll手册
概述: 大家在日常工作中最常用的插件是什么,jQurey?Lazyload?但是这些都是在PC端,但是在移动端最常用的插件莫过于iScroll了,iScroll到底是什么东西,应该怎么用?iScrol ...
- js经典试题之原型与继承
js经典试题之原型与继承 1:以下代码中hasOwnProperty的作用是? var obj={} …….. obj.hasOwnProperty("val") 答案:判断obj ...
- 关于14道魔鬼js考题的整理
1.(function(){ return typeof arguments })(); 这里返回时是argument类型,它是个类数组,也就对象,所以是object,准确谁是[object argu ...
- 软工实践Alpha冲刺(1/10)
队名:我头发呢队 组长博客 作业博客 张杰(组长) 过去两天完成了哪些任务 查阅Python爬取音源的资料,如 Python3爬虫抓取网易云音乐热评实战 Python爬取高品质QQ音乐(2) 如何爬网 ...
- 用逗号隔开简单数据保存为csv
用记事本编辑简单数据,用英文逗号隔开,编辑为多列,保存为.csv文件.可以用Excel打开编辑.
- iOS开发UIColor,CGColor,CIColor三者的区别和联系
最近看了看CoreGraphics的东西,看到关于CGColor的东西,于是就想着顺便看看UIColor,CIColor,弄清楚它们之间的区别和联系.下面我们分别看看它们三个的概念: 一.UIColo ...
- Js键盘事件全面控制,回车按键事件,键盘对应按键码,按键事件兼容各个浏览器。
在网上查询的按键码如下: 一.键盘按键和键盘对应代码表: 字母按键码A <--------> 65 B <--------> 66 C <--------> 6 ...
- Java-通过比较throw与throws来阐述抛出异常
转自:http://www.cnblogs.com/Miracle-Maker/p/6239346.html 浅谈Java异常 以前虽然知道一些异常的处理,也用过一些,但是对throw和throws区 ...
- 苹果IOS、安卓推送功能开发
IOS推送开发:以下是基于开源javapns推送开发1.DerInputStream.getLength(): lengthTag=111, too big.先排除是否由于打包时证书 .p12 文件被 ...
- iOS开发UI篇—transframe属性(形变)
iOS开发UI篇—transframe属性(形变) 1. transform属性 在OC中,通过transform属性可以修改对象的平移.缩放比例和旋转角度 常用的创建transform结构体方法分两 ...