One way to implement a transition function is by generating rough trajectories for each accessible "next state" and then finding the best. To "find the best" we generally use cost functions. We can then figure out how costly each rough trajectory is and then select the state with the lowest cost trajectory.

We'll discuss this in more detail later, but first read carefully through the pseudocode below to get a better sense for how a transition function might work.

def transition_function(predictions, current_fsm_state, current_pose, cost_functions, weights):
# only consider states which can be reached from current FSM state.
possible_successor_states = successor_states(current_fsm_state) # keep track of the total cost of each state.
costs = []
for state in possible_successor_states:
# generate a rough idea of what trajectory we would
# follow IF we chose this state.
trajectory_for_state = generate_trajectory(state, current_pose, predictions) # calculate the "cost" associated with that trajectory.
cost_for_state =
for i in range(len(cost_functions)) :
# apply each cost function to the generated trajectory
cost_function = cost_functions[i]
cost_for_cost_function = cost_function(trajectory_for_state, predictions) # multiply the cost by the associated weight
weight = weights[i]
cost_for_state += weight * cost_for_cost_function
costs.append({'state' : state, 'cost' : cost_for_state}) # Find the minimum cost state.
best_next_state = None
min_cost =
for i in range(len(possible_successor_states)):
state = possible_successor_states[i]
cost = costs[i]
if cost < min_cost:
min_cost = cost
best_next_state = state return best_next_state

Obviously we are glossing over some important details here. Namely: what are these cost functions and how do we create them? We'll talk about that next!

behavior planning——10 behaior planning pseudocode的更多相关文章

  1. Behavior Trees for Path Planning (Autonomous Driving)

    Behavior Trees for Path Planning (Autonomous Driving) 2019-11-13 08:16:52 Path planning in self-driv ...

  2. HOW TO RUN A SPRINT PLANNING MEETING (THE WAY I LIKE IT)

    This is a sample agenda for a sprint planning meeting. Depending on your context you will have to ch ...

  3. 运动规划 (Motion Planning): MoveIt! 与 OMPL

    原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错 ...

  4. Urban Planning and Public Health - Reflection on Professor Webster's article in Urban Planning Forum

    1. General review. Professor Webster published this article in Urban Planning Forum, one of the top ...

  5. planning深度剖析

    planning深度剖析 结合find命令过滤目录及文件名后缀: find /home/hadoop/nisj/automationDemand/ -type f -name '*.py'|xargs ...

  6. 运动规划 (Motion Planning): MoveIt! 与 OMPL---44

    原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错 ...

  7. Oracle Hyperion Planning 11.1 .1:创建与管理应用程序 第1课:Planning概述

    第1课:Planning概述 1.说明 Oracle Enterprise Performance Management system Oracle Enterprise Performance Ma ...

  8. 2017.10.31 Enginer+position+statement

    一.The basic information Post name Engineering manager Department Engineering Post member A24645 imme ...

  9. 《Note --- Unreal 4 --- behavior tree》

    Web: https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html Test project: D:\En ...

随机推荐

  1. GitHub and Git

    book:https://git-scm.com/book/zh/v2 Git使用简易指南:https://www.bootcss.com/p/git-guide

  2. TYVJ4239 [NOIP2015提高组DayT3]斗地主

    P2668 斗地主 题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中, 牌的大小关系根据牌的数码表示如 ...

  3. console.js还有浏览器不支持?

    今天看到项目中引入了一个插件,我超级惊讶 为什么引入console.js啊? 这个是插件的源码:https://github.com/yanhaijing/console.js 我搜到源作者对这个插件 ...

  4. 杨柳絮-Info:菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾”

    ylbtech-杨柳絮-Info:菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾” 1.返回顶部 1. 菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾” 2019年04月09日 11:44  来源:大 ...

  5. WPF:数据绑定总结(1) https://segmentfault.com/a/1190000012981745

    WPF:数据绑定总结(1) visual-studio c# 1.3k 次阅读  ·  读完需要 16 分钟 0 一.概念:什么是数据绑定? WPF中的数据绑定:是在应用程序 UI 与业务逻辑之间建立 ...

  6. 2019-8-31-C#-对-byte-数组进行模式搜索

    title author date CreateTime categories C# 对 byte 数组进行模式搜索 lindexi 2019-08-31 16:55:58 +0800 2018-07 ...

  7. pytest fixture 利用 params参数实现用例集合

    @pytest.fixture有一个params参数,接受一个列表,列表中每个数据都可以作为用例的输入.也就说有多少数据,就会形成多少用例.如下面例子,就形成3条用例 test_parametrizi ...

  8. malloc: *** error for object 0x10a291df8: pointer being freed was not allocated *** set a breakpoint in malloc_error_break to debug

    malloc_error_break错误: .You'll find out what the object is when you break in the debugger. Just look ...

  9. Bellman-Ford(可解决负权边)--时间复杂度优化

    Bellman-Ford 可解决带有负权边的最短路问题 解决负权边和Dijkstra相比是一个优点,Bellman-Ford的核心代码只有4行:: u[],v[],w[] 分别存一条边的顶点.权值,d ...

  10. man命令及help命令

    一.man命令 man命令常用工具命令 man命令是Linux下的帮助指令,通过man指令可以查看Linux中的指令帮助.配置文件帮助和编程帮助等信息. 语法: man(选项)(参数) 选项: -a: ...