设置ubuntu的softwares&updates的源为国内源,这样会提高下载速度。

如果是安装python相关库,为提高速度使用:

pip3 install 要下载的库 -i https://国内源

安装caffe依赖库:

 # python3 modules (numpy, protobuf, skimage)
sudo pip3 install numpy
sudo apt-get install python3-skimage
sudo apt-get install python3-protobuf # build essential
sudo apt-get install build-essential cmake git pkg-config # gflags, glog, lmdb
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev # boost
sudo apt-get install libboost-all-dev # hdf5
sudo apt-get install libhdf5-dev # protobuf
sudo apt-get install protobuf-compiler libprotobuf-dev # blas
sudo apt-get install libblas-dev libcblas-dev libatlas-base-dev libopenblas-dev # leveldb
sudo apt-get install libleveldb-dev # snappy
sudo apt-get install libsnappy-dev

安装opencv3.2

下载源代码 opencv-3.2.0.zip

 unzip opencv-3.2..zip
cd opencv-3.2.
mkdir release
cd release
cmake ..
make -j4
sudo make install

安装git:

sudo apt-get install git

安装caffe:

git clone https://github.com/BVLC/caffe

cd caffe

cp Makefile.config.example Makefile.config

Makefile.config文件:

 ## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV :=
# USE_LEVELDB :=
# USE_LMDB :=
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
OPENCV_VERSION := # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2. \
# /usr/lib/python2./dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2. \
# $(ANACONDA_HOME)/lib/python2./site-packages/numpy/core/include # Uncomment to use Python (default is Python )
PYTHON_LIBRARIES := boost_python3 python3.6m
PYTHON_INCLUDE := /usr/include/python3.6m \
# /usr/lib/python3./dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @

编译并测试:

 make all -j4
make test
make runtest

Ubuntu18.04安装caffe python3.6 opencv3.2 CPU的更多相关文章

  1. Ubuntu18.04安装Python3.6.8

    Ubuntu18.04预装了Python3.6.5 终于不再预装Python2.7了 但是系统预装的Python分散安装在各个目录里 以后改起来非常不方便 所以本次安装Python3.6.8 Pyth ...

  2. Ubuntu18.04安装Virtualenv虚拟环境

    在Ubuntu18.04安装Virtualenv虚拟环境 [实验环境]: 在这台电脑上已经安装了python3 [安装参考] 1.查看是否已安装virtualenv virtualenv --vers ...

  3. Ubuntu18.04安装OpenCV4.1.0

    Ubuntu18.04安装OpenCV4.1.0 1.首先要安装依赖 sudo apt-get install build-essential \ cmake git libgtk2.0-dev pk ...

  4. Ubuntu18.04安装mysql5.7

    Ubuntu18.04安装mysql5.7 1.1安装 首先执行下面三条命令: # 安装mysql服务 sudo apt-get install mysql-server # 安装客户端 sudo a ...

  5. Ubuntu18.04安装RabbitMQ

    Ubuntu18.04安装RabbitMQ 2018年06月10日 19:32:38 dmfrm 阅读数:2492    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog ...

  6. ubuntu18.04 安装mysql不出现设置 root 帐户的密码问题(装)

    ubuntu18.04 安装mysql不出现设置 root 帐户的密码问题      https://blog.csdn.net/NeptuneClouds/article/details/80995 ...

  7. ubuntu18.04 安装hadoop 2.7.3+hive 2.3.4

    1. 安装hadoop 详细请参见本人的另外一片博文<Hadoop 2.7.3 分布式集群安装> 2. 下载hive 2.3.4 解压文件到/opt/software -bin.tar.g ...

  8. Ubuntu18.04安装thunderbird并设置中文

    Ubuntu18.04安装thunderbird并设置中文 安装thunderbird sudo apt-get install thunderbird 安装中文包 sudo apt-get inst ...

  9. Ubuntu18.04安装Docker, centos7安装Docker

    Ubuntu18.04安装Docker 第一种方法从Ubuntu的仓库直接下载安装: 安装比较简单,这种安装的Docker不是最新版本,不过对于学习够用了,依次执行下面命令进行安装. $ sudo a ...

随机推荐

  1. 使用wsgiref手撸web框架

    模板 前言 要说到应用程序,就不得不提的就是cs架构和BS架构 所谓的cs架构就是client端和server端,就像我们的电脑上的qq,微信等应用程序 bs架构就是浏览器端和server端,我们不需 ...

  2. HTML表单提交标签

    <form>表单提交标签,设置提交范围 有name属性才能被提交 action:提交的地址url method:提交方式 get方式(默认):会将参数拼接在连接后,有大小限制(4k) po ...

  3. pandas包学习笔记

    目录 zip Importing & exporting data Plotting with pandas Visual exploratory data analysis 折线图 散点图 ...

  4. Linux - Shell - 替换文件名中的空格

    概述 使用 shell 替换 文件名中的空格 背景 尝试用 find 配合 xargs, 在多个文件里找关键字 出现了问题 有空格的文件名, 并不是很好处理 准备 os centos7 1. 问题: ...

  5. Sql Server:创建用户并指定该用户只能看指定的视图,除此之外的都不让查看

    1,在sql server中选择好要操作的数据库 2,--当前数据库创建角色 exec sp_addrole 'seeview'      --创建了一个数据库角色,名称为:[seeview] 3,- ...

  6. MyEclipse把普通的项目变成hibernate项目

  7. 第一次刷leetcode小结

    LeetCode 上不会的 Reverse Integer Gray Code Generate Parentheses Pascal's Triangle II 正方向读和反方向读保持不变的区别 T ...

  8. sql查询 ——聚合函数

    --聚合函数 -- sum() -- 求和 select sum(age) from student; -- count() -- 求数量 -- 数据量 select count(*) as '数量' ...

  9. python3 yield实现假的多并发

    import time def fun1(): while True: print("fun1") time.sleep(0.1) yield def fun2(): while ...

  10. python3练习100题——017

    原题链接:http://www.runoob.com/python/python-exercise-example17.html 题目:输入一行字符,分别统计出其中 英文字母.空格.数字和其它字符的个 ...