传送门:QAQQAQ

题意:给一个01矩阵A,他的相反矩阵为B,每一次变换都会将原矩阵面积乘4成为:

AB

BA

矩阵的左上角固定,变换无限次,现有q个询问,即求一个矩阵内的1的个数。

思路:因为反转,所以A,B矩阵拼起来刚好是一个全都为1的矩阵,所以答案就是匹配的A,B矩阵总点数/2和右下角1的个数之和

注意点:

1.因为数据较大,要用前缀和思想

2.要开longlong

3.注意询问时各个变量的重置

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
 
int A[][],B[][],a[][],b[][];
int sa[][],sb[][];
ll n,m,q,t[];
void init()
{
t[]=;
for(int i=;i<=;i++) t[i]=t[i-]*;
memset(sa,,sizeof(sa));
memset(sb,,sizeof(sb));
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
sa[i][j]=sa[i-][j]+sa[i][j-]-sa[i-][j-]+A[i][j];
sb[i][j]=sb[i-][j]+sb[i][j-]-sb[i-][j-]+B[i][j];
}
}
}
 
 
int s=;
void judge(ll x)//even->A odd->B
{
for(int i=;i>=;i--)
{
if(t[i]<x) x-=t[i],s++;
}
}
 
ll solve(ll x,ll y)
{
s=;
ll ret=;
if(x==||y==) return ;
ret+=(x*y-(x%(*n))*(y%(*m)))/;//n,m写错
ll xx=x-x%(*n)+;
ll yy=y-y%(*m)+;
ll tx=(xx-)/n+;
ll ty=(yy-)/m+;
judge(tx); judge(ty);
ll dx=x-xx+,dy=y-yy+;
if(s%==)
{
if(dx<=n&&dy<=m) ret+=sb[dx][dy];
if(dx<=n&&dy>m) ret+=sa[dx][dy-m]+sb[dx][m];
if(dx>n&&dy<=m) ret+=sb[n][dy]+sa[dx-n][dy];
if(dx>n&&dy>m) ret+=sb[n][m]+sa[n][dy-m]+sa[dx-n][m]+sb[dx-n][dy-m];
}
else
{
if(dx<=n&&dy<=m) ret+=sa[dx][dy];
if(dx<=n&&dy>m) ret+=sb[dx][dy-m]+sa[dx][m];
if(dx>n&&dy<=m) ret+=sa[n][dy]+sb[dx-n][dy];
if(dx>n&&dy>m) ret+=sa[n][m]+sb[n][dy-m]+sb[dx-n][m]+sa[dx-n][dy-m];
}
return ret;
}
 
int main()
{
scanf("%lld%lld%lld",&n,&m,&q);
for(int i=;i<=n;i++)
{
char str[];
scanf("%s",str+);
for(int j=;j<=m;j++)
{
A[i][j]=str[j]-'';
B[i][j]=(str[j]-'')^;
}
}
init();
while(q--)
{
ll x1,y1,x2,y2;//开ll
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);//s不在这里重置
ll ans=solve(x2,y2)-solve(x1-,y2)-solve(x2,y1-)+solve(x1-,y1-);
printf("%lld\n",ans);
}
}

codeforces 1186E- Vus the Cossack and a Field的更多相关文章

  1. E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)

    E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...

  2. Codeforces F. Vus the Cossack and Numbers(贪心)

    题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...

  3. 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)

    Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...

  4. codeforces 1186C Vus the Cossack and Strings

    题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...

  5. Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路

    题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2).(deg[i]是 ...

  6. @codeforces - 1186F@ Vus the Cossack and a Graph

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图(n, m<=10^6),记第 ...

  7. CodeForces - 1186 C. Vus the Cossack and Strings (异或)

    Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...

  8. Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)

    C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...

  9. Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers

    Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...

随机推荐

  1. 10个CSS简写技巧

    CSS简写就是指将多行的CSS属性声明化成一行,又称为css代码优化.CSS简写的最大好处就是能够显著减少CSS文件的大小,其实还有很多其他益处.臃肿而杂乱的CSS样式表会使你遇到问题是难以调试.尤其 ...

  2. PHP算法之猜数字

    小A 和 小B 在玩猜数字.小B 每次从 1, 2, 3 中随机选择一个,小A 每次也从 1, 2, 3 中选择一个猜.他们一共进行三次这个游戏,请返回 小A 猜对了几次? 输入的guess数组为 小 ...

  3. INSTALL_FAILED_TEST_ONLY oppor11p 安装时出现的问题

      刚开始出现这个问题 我很懵逼, 因为我之前一直运行都好好的  !!我在网上查了好多资料 试了好几种办法 我先说下我成功的办法       方法1: Android Studio 3.0会在debu ...

  4. CF930E Coins Exhibition

    题意:平面上一共有k个硬币(k<=1e9),给你n个区间这些区间中至少有一个硬币反面朝上,m个区间中至少有一个硬币正面朝上.问有多少种硬币放置方案?n,m<=100005. 标程: #in ...

  5. Android App上架流程

    想要把APP上架到应用市场都要先注册开发者账号才可以.这里的方法包括注册帐号和后期上架及一些需要注意的问题.注意:首次提交应用绝对不能随便删除,否则后面再提交会显示应用APP冲突,会要求走应用认领流程 ...

  6. CIE XYZ

    了解CIE XYZ的来龙去脉,看维基之前,先读这两篇文章: https://medium.com/hipster-color-science/a-beginners-guide-to-colorime ...

  7. scala中ArrayBuffer简单使用

    import scala.collection.mutable.ArrayBuffer /** * 与Array区别: * 1.Array是不可变的,不能直接地对其元素进行删除操作,只能通过重赋值或过 ...

  8. kaptcha 实现验证码

    依赖 <dependency> <groupId>com.github.penggle</groupId> <artifactId>kaptcha< ...

  9. Jmeter接口自动化测试:简单使用步骤

    好处:不需要页面就可以提前介入测试,实施成本低,修改量少,相对于UI自动化来说更为稳定 1. 下载略过 2. 使用步骤 创建线程组合控制器(Jmeter基本操作) 针对http协议的接口增加Sampl ...

  10. spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解

    spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...