codeforces 1186E- Vus the Cossack and a Field
传送门:QAQQAQ
题意:给一个01矩阵A,他的相反矩阵为B,每一次变换都会将原矩阵面积乘4成为:
AB
BA
矩阵的左上角固定,变换无限次,现有q个询问,即求一个矩阵内的1的个数。
思路:因为反转,所以A,B矩阵拼起来刚好是一个全都为1的矩阵,所以答案就是匹配的A,B矩阵总点数/2和右下角1的个数之和
注意点:
1.因为数据较大,要用前缀和思想
2.要开longlong
3.注意询问时各个变量的重置
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int A[][],B[][],a[][],b[][];
int sa[][],sb[][];
ll n,m,q,t[];
void init()
{
t[]=;
for(int i=;i<=;i++) t[i]=t[i-]*;
memset(sa,,sizeof(sa));
memset(sb,,sizeof(sb));
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
sa[i][j]=sa[i-][j]+sa[i][j-]-sa[i-][j-]+A[i][j];
sb[i][j]=sb[i-][j]+sb[i][j-]-sb[i-][j-]+B[i][j];
}
}
}
int s=;
void judge(ll x)//even->A odd->B
{
for(int i=;i>=;i--)
{
if(t[i]<x) x-=t[i],s++;
}
}
ll solve(ll x,ll y)
{
s=;
ll ret=;
if(x==||y==) return ;
ret+=(x*y-(x%(*n))*(y%(*m)))/;//n,m写错
ll xx=x-x%(*n)+;
ll yy=y-y%(*m)+;
ll tx=(xx-)/n+;
ll ty=(yy-)/m+;
judge(tx); judge(ty);
ll dx=x-xx+,dy=y-yy+;
if(s%==)
{
if(dx<=n&&dy<=m) ret+=sb[dx][dy];
if(dx<=n&&dy>m) ret+=sa[dx][dy-m]+sb[dx][m];
if(dx>n&&dy<=m) ret+=sb[n][dy]+sa[dx-n][dy];
if(dx>n&&dy>m) ret+=sb[n][m]+sa[n][dy-m]+sa[dx-n][m]+sb[dx-n][dy-m];
}
else
{
if(dx<=n&&dy<=m) ret+=sa[dx][dy];
if(dx<=n&&dy>m) ret+=sb[dx][dy-m]+sa[dx][m];
if(dx>n&&dy<=m) ret+=sa[n][dy]+sb[dx-n][dy];
if(dx>n&&dy>m) ret+=sa[n][m]+sb[n][dy-m]+sb[dx-n][m]+sa[dx-n][dy-m];
}
return ret;
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&q);
for(int i=;i<=n;i++)
{
char str[];
scanf("%s",str+);
for(int j=;j<=m;j++)
{
A[i][j]=str[j]-'';
B[i][j]=(str[j]-'')^;
}
}
init();
while(q--)
{
ll x1,y1,x2,y2;//开ll
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);//s不在这里重置
ll ans=solve(x2,y2)-solve(x1-,y2)-solve(x2,y1-)+solve(x1-,y1-);
printf("%lld\n",ans);
}
}
codeforces 1186E- Vus the Cossack and a Field的更多相关文章
- E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)
E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...
- Codeforces F. Vus the Cossack and Numbers(贪心)
题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...
- 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)
Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...
- codeforces 1186C Vus the Cossack and Strings
题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...
- Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路
题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2).(deg[i]是 ...
- @codeforces - 1186F@ Vus the Cossack and a Graph
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图(n, m<=10^6),记第 ...
- CodeForces - 1186 C. Vus the Cossack and Strings (异或)
Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...
- Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)
C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...
- Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers
Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...
随机推荐
- 10个CSS简写技巧
CSS简写就是指将多行的CSS属性声明化成一行,又称为css代码优化.CSS简写的最大好处就是能够显著减少CSS文件的大小,其实还有很多其他益处.臃肿而杂乱的CSS样式表会使你遇到问题是难以调试.尤其 ...
- PHP算法之猜数字
小A 和 小B 在玩猜数字.小B 每次从 1, 2, 3 中随机选择一个,小A 每次也从 1, 2, 3 中选择一个猜.他们一共进行三次这个游戏,请返回 小A 猜对了几次? 输入的guess数组为 小 ...
- INSTALL_FAILED_TEST_ONLY oppor11p 安装时出现的问题
刚开始出现这个问题 我很懵逼, 因为我之前一直运行都好好的 !!我在网上查了好多资料 试了好几种办法 我先说下我成功的办法 方法1: Android Studio 3.0会在debu ...
- CF930E Coins Exhibition
题意:平面上一共有k个硬币(k<=1e9),给你n个区间这些区间中至少有一个硬币反面朝上,m个区间中至少有一个硬币正面朝上.问有多少种硬币放置方案?n,m<=100005. 标程: #in ...
- Android App上架流程
想要把APP上架到应用市场都要先注册开发者账号才可以.这里的方法包括注册帐号和后期上架及一些需要注意的问题.注意:首次提交应用绝对不能随便删除,否则后面再提交会显示应用APP冲突,会要求走应用认领流程 ...
- CIE XYZ
了解CIE XYZ的来龙去脉,看维基之前,先读这两篇文章: https://medium.com/hipster-color-science/a-beginners-guide-to-colorime ...
- scala中ArrayBuffer简单使用
import scala.collection.mutable.ArrayBuffer /** * 与Array区别: * 1.Array是不可变的,不能直接地对其元素进行删除操作,只能通过重赋值或过 ...
- kaptcha 实现验证码
依赖 <dependency> <groupId>com.github.penggle</groupId> <artifactId>kaptcha< ...
- Jmeter接口自动化测试:简单使用步骤
好处:不需要页面就可以提前介入测试,实施成本低,修改量少,相对于UI自动化来说更为稳定 1. 下载略过 2. 使用步骤 创建线程组合控制器(Jmeter基本操作) 针对http协议的接口增加Sampl ...
- spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解
spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...