先设定好我们的dataframe:

# pandas 设置特定的值
dates=pd.date_range('',periods=6)
# print(dates)
df=pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['a','b','c','d'])
print(df)

结果:

             a   b   c   d
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23

一、修改特定的数据

1.1分别根据索引和行(列)号来修改特定的值

df.iloc[2,2]=1111 #第二列第二行的数据 改为1111
print(df) df.loc['','b']=2222
print(df)

结果:

             a     b     c   d
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23

1.2对特定的行进行筛选操作

df[df.a>4]=0 #这个是指 a这一列 只要是大于4的 其所在的行全部变为0
print(df)

结果:

            a  b  c  d
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 0 0 0 0
2013-01-04 0 0 0 0
2013-01-05 0 0 0 0
2013-01-06 0 0 0 0

1.3对特定的列进行筛选操作:

df.a[df.a>4]=0#这个是只更改某一列
print(df)

结果

            a   b   c   d
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 0 9 10 11
2013-01-04 0 13 14 15
2013-01-05 0 17 18 19
2013-01-06 0 21 22 23

二、增加一个列

#datafame 加一个空的行
df['f']=np.nan
print(df)
#这个是增加一个有内容的行
df['e']=pd.Series([1,2,3,4,5,6],index=pd.date_range('',periods=6))
print(df)

结果:

             a   b   c   d   f  e
2013-01-01 0 1 2 3 NaN 1
2013-01-02 4 5 6 7 NaN 2
2013-01-03 8 9 10 11 NaN 3
2013-01-04 12 13 14 15 NaN 4
2013-01-05 16 17 18 19 NaN 5
2013-01-06 20 21 22 23 NaN 6

三、处理没有数据的部分

3.1设定丢失数据

# pandas处理没有数据的部分
dates=pd.date_range('',periods=6)
# print(dates)
df=pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['a','b','c','d'])
print(df)
df.iloc[0,1]=np.nan#设定丢失的数据
df.iloc[1,2]=np.nan
print(df)

结果:

             a     b     c   d
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23

3.2丢弃操作

丢弃特定的行

df=df.dropna(axis=0,how='any')#axis=0 表示行 how={'any','all'}
print(df)

结果

             a     b     c   d
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23

丢弃特定的列:

df=df.dropna(axis=1,how='any')
print(df)

结果

             a   d
2013-01-01 0 3
2013-01-02 4 7
2013-01-03 8 11
2013-01-04 12 15
2013-01-05 16 19
2013-01-06 20 23

填充操作:

# 填充操作
df=df.fillna(value=2333)
print(df)

结果:

             a       b       c   d
2013-01-01 0 2333.0 2.0 3
2013-01-02 4 5.0 2333.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23

四、判断是否有缺失

# 判断是否有缺失
df=df.isnull()
print(df) a=np.any(df.isnull()==True)
print(a)

结果:

                a      b      c      d
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
直接确定是否有缺失的
True

Panda的学习之路(3)——pandas 设置特定的值&处理没有数据的部分的更多相关文章

  1. Qt 学习之路 2(57):可视化显示数据库数据

    Qt 学习之路 2(57):可视化显示数据库数据(skip) 豆子 2013年6月26日 Qt 学习之路 2 26条评论 前面我们用了两个章节介绍了 Qt 提供的两种操作数据库的方法.显然,使用QSq ...

  2. 大数据学习之路又之从小白到用sqoop导出数据

    写这篇文章的目的是总结自己学习大数据的经验,以为自己走了很多弯路,从迷茫到清晰,真的花费了很多时间,希望这篇文章能帮助到后面学习的人. 一.配置思路 安装linux虚拟机--->创建三台虚拟机- ...

  3. Mysql数据表字段设置了默认值,插入数据后默认字段的值却为null,不是默认值

    我将mysql的数据表的某个字段设置了默认值为1,当向该表插入数据的时候该字段的值不是默认值,而是null. 我的错误原因: 对数据库的操作我使用了持久化工具mybatis,插入数据的时候插入的是整个 ...

  4. Panda的学习之路(2)——pandas选择数据

    首先定义panda dates=pd.date_range(',periods=6) # print(dates) df=pd.DataFrame(np.arange(24).reshape(6,4) ...

  5. Panda的学习之路(1)——series 和 Dataframe

    一.Series panda最基本的对象 # pandas的基础s=pd.Series([1,3,6,np.nan,44,1])#建立个简单的基本对象 类似一个一位数组print("建立个简 ...

  6. Android学习之路——Android四大组件之activity(二)数据的传递

    上一篇讲了activity的创建和启动,这一篇,我们来讲讲activity的数据传递 activity之间的数据传递,这里主要介绍的是activity之间简单数据的传递,直接用bundle传递基本数据 ...

  7. Spark学习之路 (九)SparkCore的调优之数据倾斜调优

    摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...

  8. Spark学习之路 (九)SparkCore的调优之数据倾斜调优[转]

    调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的 ...

  9. IOS开发---菜鸟学习之路--(十三)-利用MBProgressHUD进行异步获取数据

    本章将介绍如何利用MBProgressHUD实现异步处理数据. 其实我本来只是像实现一个加载数据时提示框的效果,然后问了学长知道了这个类,然后就使用了 接着就发现了一个“BUG” 再然后就发现原来MB ...

随机推荐

  1. python threading2种调用方式实例

    1.认识GIL: 说到GIL一直是代码专家们一直以来想要解决的问题,也是被许多程序员诟病的,下面带领大家看下官方threading模块document中如何去描述对于GIL这个全局解释器锁的:http ...

  2. Linux之温故知新2

    1.关于ssh免密码登陆的ssh-keygen, ssh-copy-id的使用, 然后使用ssh-copy-id user@remote将公钥传给服务器, 以及别名 1 C:\Users\linxmo ...

  3. HTML连载63-a标签的伪类选择器

    一.a标签的伪类选择器 1.通过观察可以发现a标签存在一定状态 (1)默认状态,从未被访问过 (2)被访问过的状态 (3)鼠标长按的状态 (4)鼠标悬停在a标签上的演示 2.什么是a标签的伪类选择器? ...

  4. Python 排序---sort与sorted学习(这是摘录别人的资源总结,自己可临摹学习)

    第一种:内建方法sort() 可以直接对列表进行排序 用法: list.sort(func=None, key=None, reverse=False(or True)) 对于reverse这个boo ...

  5. SPDK-nvmf与不同传输类型的公共接口

    SPDK-nvmf与不同传输类型的公共接口 不同类型的传输层到nvmf的公共命令请求接口 nvmf_fc_hwqp_handle_request() -->cmd_iu = buffer-> ...

  6. centos7添加搜狗输入法

    https://www.cnblogs.com/eeexu123/p/9259430.html https://blog.csdn.net/jpch89/article/details/8190380 ...

  7. python hashlib 详解

    1.概述 摘要算法简介 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定 ...

  8. Java上传图片到Ftp,包含上传后文件大小为0的问题和Properties配置文件的读取

    准备工作:需要使用coomos-net jar包.下载地址 一. 上传图片到FTP,文件大小为0的问题,解决:将ftp模式修改为Passive模式就可以了. //将ftp模式修改为Passive模式 ...

  9. Java.util.Calendar类

    Java.util.Calendar类 package myProject; import java.text.SimpleDateFormat; import java.util.Calendar; ...

  10. python之路之生成器和的迭代器

    生成器的基本原理 生成器实现xrange 迭代器