Treats for the Cows

先搬中文

Descriptions:

给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次取完。假设你第i次取的数字是x,你可以获得i*x的价值。你需要规划取数顺序,使获得的总价值之和最大。

Input

第一行一个数字n(1<=n<=2000)。

下面n行每行一个数字v(i)。(1<=v(i)<=1000)

Output

输出一个数字,表示最大总价值和。

Sample Input

5

1

3

1

5

2

Sample Output

43

Hint

按照这种下标顺序取数: 1, 5, 2, 3, 4

取出的数按顺序为:1, 2, 3, 1, 5

最大总价值和:1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

题目链接:
https://vjudge.net/problem/POJ-3186

区间dp

dp[i][j] 代表从i取到j的最大总数

dp[i][j] = max(dp[i+1][j]+a[i]*(n+i-j) , dp[i][j-1]+a[j]*(n+i-j))  即取右边的数   取左边的数  比较哪个大

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x, y) memset(x, y, sizeof(x))
#define Maxn 2000+10
using namespace std;
int n;
int dp[Maxn][Maxn],a[Maxn];
int main()
{
MEM(dp,);
MEM(a,);
cin>>n;
for(int i=;i<n;i++)
cin>>a[i];
for(int len=;len<n;len++)//区间长度len
{
for(int i=;i+len<n;i++)//固定区间左边起点
{
int l=i,r=i+len;//区间左、右点
//取右边的数 取左边的数 比较哪个大
dp[l][r]=max(dp[l+][r]+a[l]*(n+l-r),dp[l][r-]+a[r]*(n+l-r));
}
}
cout<<dp[][n-]<<endl;
return ; }

给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次取完。假设你第i次取的数字是x,你可以获得i*x的价值。你需要规划取数顺序,使获得的总价值之和最大。Input第一行一个数字n(1<=n<=2000)。
下面n行每行一个数字v(i)。(1<=v(i)<=1000)Output输出一个数字,表示最大总价值和。Sample Input

5
1
3
1
5
2

Sample Output

43

Hint按照这种下标顺序取数: 1, 5, 2, 3, 4
取出的数按顺序为:1, 2, 3, 1, 5
最大总价值和:1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

【POJ - 3186】Treats for the Cows (区间dp)的更多相关文章

  1. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

  2. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  3. poj 3186 Treats for the Cows(dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  4. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  5. POJ3086 Treats for the Cows(区间DP)

    题目链接  Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...

  6. O - Treats for the Cows 区间DP

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast am ...

  7. POJ 3186 Treats for the Cows (动态规划)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  8. Treats for the Cows 区间DP POJ 3186

    题目来源:http://poj.org/problem?id=3186 (http://www.fjutacm.com/Problem.jsp?pid=1389) /** 题目意思: 约翰经常给产奶量 ...

  9. POJ 3186 Treats for the Cows 一个简单DP

    DP[i][j]表示现在开头是i物品,结尾是j物品的最大值,最后扫一遍dp[1][1]-dp[n][n]就可得到答案了 稍微想一下,就可以, #include<iostream> #inc ...

  10. POJ 3186 Treats for the Cows

    简单DP dp[i][j]表示的是i到j这段区间获得的a[i]*(j-i)+... ...+a[j-1]*(n-1)+a[j]*n最大值 那么[i,j]这个区间的最大值肯定是由[i+1,j]与[i,j ...

随机推荐

  1. 使用整体模型模板辅助器 Using Whole-Model Templated Helpers 模板辅助器方法 精通ASP.NET MVC 5

    怎么会

  2. js原型链和原型链的继承

    每一个对象都有一个“_proto_”指针,指向实例化该对象的构造函数的原型对象,当该对象没有你想拿到的属性时,解释器会顺着指针不断向上找. 每一个构造你函数都有一个“prototype”属性,指向该构 ...

  3. 开源项目SMSS发开指南(四)——SSL/TLS加密通信详解

    本文将详细介绍如何在Java端.C++端和NodeJs端实现基于SSL/TLS的加密通信,重点分析Java端利用SocketChannel和SSLEngine从握手到数据发送/接收的完整过程.本文也涵 ...

  4. XSS Challenges学习笔记 Stage#1~ Stage#19

    开门见山 Stage #1 http://xss-quiz.int21h.jp/?sid=2a75ff06e0147586b7ceb0fe68ee443b86a6e7b9 这一道题发现我们写入的内容直 ...

  5. mysql 记录一次内存清理

    摘自:https://blog.csdn.net/wyzxg/article/details/7279986/ 摘要:Linux对内存的管理与Windows不同,free小并不是说内存不够用了,应该看 ...

  6. BIO、NIO

    1. BIO和NIO 我们平常使用的IO是BIO(Blocking-IO),即阻塞IO.而NIO(No-blocking-IO)则是非阻塞IO,二者有什么区别呢? 预先知识准备 同步:发起调用后,调用 ...

  7. Arduino系列之光照传感器(三)

    今天,我将简单做一个当光照值低于某个值的时候,灯光自动打开,当高于某个值的时候,自动关闭. 设计代码原理: 首先,定义一个全局变量,并赋予初始值 然后,初始化程序 将设定某个IO口为输出模式 读取光度 ...

  8. 练习2-13 求N分之一序列前N项和 (15 分)

    练习2-13 求N分之一序列前N项和 (15 分) 输入在一行中给出一个正整数N. 输出格式: 在一行中按照“sum = S”的格式输出部分和的值S,精确到小数点后6位.题目保证计算结果不超过双精度范 ...

  9. ipwry源码

    qqwry.ipwry都是cnss(http://blog.csdn.net/cnss/article/details/136069)出品,终于找到了源码,下载地址:http://download.c ...

  10. 必须收藏的MySQL高性能优化实战总结!

    MySQL对于很多程序员来说,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多的查询优化工作实际上就是 ...