Acesrc and Travel

时间限制: 1 Sec  内存限制: 128 MB

题目描述

Acesrc is a famous tourist at Nanjing University second to none. During this summer holiday, he, along with Zhang and Liu, is going to travel to Hong Kong. There are n spots in Hong Kong, and n−1 bidirectional sightseeing bus routes connecting these spots. They decide to visit some spots by bus.

However, Zhang and Liu have different preferences for these spots. They respectively set a satisfactory value for each spot. If they visit the ith spot, Zhang will obtain satisfactory value ai, and Liu will obtain bi. Starting with Zhang, they alternately decide the next spot to visit for the sake of fairness. There must be a bus route between the current spot and the next spot to visit. Moreover, they would never like to visit a spot twice. If anyone can't find such a next spot to visit, they have no choice but to end this travel.

Zhang and Liu are both super smart competitive programmers. Either want to maximize the difference between his total satisfactory value and the other's. Now Acesrc wonders, if they both choose optimally, what is the difference between total satisfactory values of Zhang and Liu?

输入

The first line of input consists of a single integer T (1≤T≤30), denoting the number of test cases.

For each test case, the first line contains a single integer n (1≤n≤105), denoting the number of spots. Each of the next two lines contains n integers, a1,a2,⋯,an and b1,b2,⋯,bn (0≤ai,bi≤109), denoting the 
satisfactory value of Zhang and Liu for every spot, respectively. Each of the last n−1 lines contains two integers x,y (1≤x,y≤n,x≠y), denoting a bus route between the xth spot and the yth spot. It is reachable from any spot to any other spot through these bus routes.

It is guaranteed that the sum of n does not exceed 5.01×105.

输出

For each test case, print a single integer in one line, the difference of total satisfactory values if they both choose optimally.

样例输入

1
3
1 1 1
0 2 3
1 2
1 3

样例输出

-1

题意:有两个人轮流在一棵树上选择点,每个点有一个权值,A想让权值和最大,B想让权值和最小,下一次选择的点必须和这次选择的点有直接边连接,且点不能重复选择,A可以选择任意一个点作为初始点,问最后权值和是多少。
思路:考虑DP,但这是一个无根树,于是首先要转化成有根树DP,即首先把1号点作为根节点,然后DP算出:A或者B选择了某一个点,且上一步是从改点的父亲走过来的最优权值和。然后再考虑父亲反向边的DP,即计算出:A或者B选择了某一个点,且下一步是到改点的父亲的最优权值和。则答案就是在所有B选择点时,维护最大值。
总结:无根树DP就是有根树DP加上父亲反向边的DP。

#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
using namespace std; const int N = 6e5+;
struct ss
{
int u,v,next;
};
ss edg[N*];
int head[N],sum_edge=; void addedge(int u,int v)
{
edg[sum_edge]=(ss){u,v,head[u]};
head[u]=sum_edge++;
} long long value[N];
long long ans=;
long long dp[N][]; void init(int n)
{
for(int i=;i<=n;i++)
{
head[i]=-;
dp[i][]=dp[i][]=;
}
sum_edge=;
ans=LLONG_MIN;
} long long dfs1(int x,int fa,int type)
{
if(dp[x][type])return dp[x][type];
long long now= (type== ? LLONG_MIN : LLONG_MAX); for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(type==)now=max(now,dfs1(v,x,)+value[x]);
else
now=min(now,dfs1(v,x,)+value[x]);
}
return dp[x][type]=((now==LLONG_MAX||now==LLONG_MIN) ? value[x] : now);
} long long dfs(int x,int fa,int type,long long last_ans)
{
// printf("%d %d %d %lld\n",x,fa,type,last_ans);
//printf("x=%d,fa=%d : %lld %lld value[%d]=%lld\n",x,fa,dfs1(x,fa,0),dfs1(x,fa,1),x,value[x]);
priority_queue<pair<long long,int> >q;
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(type==)q.push(make_pair(-dfs1(v,x,),v));
else
q.push(make_pair(dfs1(v,x,),v)); if(q.size()>)q.pop();
} pair<long long,int> first;
pair<long long,int> second; if(q.size())
{
first=q.top();
q.pop();
// printf("%lld\n",first.first); if(q.size())
{
second=q.top();
// printf("%lld\n",second.first);
q.pop();
}
else
{
second=first; if(x!=)first=make_pair(LLONG_MAX/,-);
else
first=make_pair(,-);
}
}
else
{
if(x!=)second=make_pair(LLONG_MAX/,-);
else
second=make_pair(,-);
} if(type==)
{
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(v==second.second)dfs(v,x,,max(last_ans,-first.first)+value[x]);
else
dfs(v,x,,max(last_ans,-second.first)+value[x]);
}
}
else
{
ans=max(ans,min(last_ans,second.first)+value[x]);
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(v==second.second)dfs(v,x,,min(last_ans,first.first)+value[x]);
else
dfs(v,x,,min(last_ans,second.first)+value[x]);
}
}
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
init(n); for(int i=;i<=n;i++)
scanf("%lld",&value[i]); for(int i=;i<=n;i++)
{
long long a;
scanf("%lld",&a);
value[i]-=a;
} for(int i=;i<n;i++)
{
int u,v;
scanf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
} /* if(n<=2)
{
long long sum=0;
for(int i=1;i<=n;i++)sum+=value[i];
printf("%lld\n",sum);
continue;
}*/ dfs(,-,,LLONG_MIN/);
dfs(,-,,LLONG_MAX/); printf("%lld\n",ans);
}
return ;
}

Acesrc and Travel的更多相关文章

  1. HDU 6662 Acesrc and Travel (换根dp)

    Problem Description Acesrc is a famous tourist at Nanjing University second to none. During this sum ...

  2. 2019杭电多校 hdu6662 Acesrc and Travel (树形dp

    http://acm.hdu.edu.cn/showproblem.php?pid=6662 题意:有两个人在树上博弈,每个点节点有两个分数a[i]和b[i],先手先选择一个点,后手在先手选的点的相邻 ...

  3. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

  4. HDU 6662 Acesrc and Travel 换根DP,宇宙最傻记录

    #include<bits/stdc++.h> typedef long long ll; using namespace std; const int maxn=1e6+50; cons ...

  5. 2019 Multi-University Training Contest 8 - 1006 - Acesrc and Travel - 树形dp

    http://acm.hdu.edu.cn/showproblem.php?pid=6662 仿照 CC B - TREE 那道题的思路写的,差不多.也是要走路径. 像这两种必须走到叶子的路径感觉是必 ...

  6. 【HDOJ6662】Acesrc and Travel(树形DP,换根)

    题意:有一棵n个点的树,每个点上有两个值a[i],b[i] A和B在树上行动,A到达i能得到a[i]的偷税值,B能得到b[i],每次行动只能选择相邻的点作为目标 两个人都想最大化自己的偷税值和对方的差 ...

  7. 【HDU6662】Acesrc and Travel【树形DP】

    题目大意:给你一棵树,每个节点有一个权值,Alice和Bob进行博弈,起点由Alice确定,确定后交替选择下一个点,Alice目标是最终值尽可能大,Bob目标是尽可能小 题解:很明显是树形DP,那么考 ...

  8. 【HDU6662】Acesrc and Travel(树型Dp)

    题目链接 大意 给出一颗树,每个点上有一个权值\(A[i]\),有两个绝顶聪明的人甲和乙. 甲乙两人一起在树上轮流走,不能走之前经过的点.(甲乙时刻在一起) 甲先手,并可以确定起点.甲想要走过的点权之 ...

  9. 2019DX#8

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Acesrc and Cube Hypernet 7.32%(3/41)   1002 A ...

随机推荐

  1. Git 查看、删除、重命名远程分支

    原文地址:http://blog.csdn.net/sunnyyoona/article/details/52065544 1. 查看远程分支 分支加上-a参数可以查看远程分支,远程分支会用红色表示出 ...

  2. thinkphp 组合查询

    组合查询的主体还是采用数组方式查询,只是加入了一些特殊的查询支持,包括字符串模式查询(_string).复合查询(_complex).请求字符串查询(_query),混合查询中的特殊查询每次查询只能定 ...

  3. SpringCloud学习笔记(四):Eureka服务注册与发现、构建步骤、集群配置、Eureka与Zookeeper的比较

    简介 Netflix在设计Eureka时遵守的就是AP原则 拓展: 在分布式数据库中的CAP原理 CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性). Availab ...

  4. PAT甲级——A1076 Forwards on Weibo

    Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and may ...

  5. nginx使用手册--nginx.conf文件配置详解

    #运行用户 user nobody; #启动进程,通常设置成和cpu的数量相等 worker_processes 1; #全局错误日志及PID文件 #error_log logs/error.log; ...

  6. 「loj#6261」一个人的高三楼

    题目 显然存在一个这样的柿子 \[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j\] 我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是 ...

  7. Spring Cloud Config-Client 无法获取 Config-Server 在 github 上的配置文件的属性值,竟然是因为

    Spring Cloud Config-Client 无法获取 Config-Server 在 github 上的配置文件的属性值,竟然是因为!!! 2018年07月23日 16:33:25 一颗很菜 ...

  8. linux-c getopt()参数处理函数

    转自:https://www.cnblogs.com/qingergege/p/5914218.html 最近在弄Linux C编程,本科的时候没好好学啊,希望学弟学妹们引以为鉴. 好了,虽然啰嗦了点 ...

  9. 初识splay

    这东西都没什么板子着实让我很难受啊,只能到网上抄抄补补, 记下两个用到的博客 https://blog.csdn.net/clove_unique/article/details/50630280 h ...

  10. No context type was found in the assembly

    如果解决方法中有多个项目存在,记住要在默认项目中选择你需要的项目进行 enable-migrations    add-migration 以及updatebase