运行环境ubuntu+python3

安装pyltp
sudo pip3 install pyltp
下载ltp_data_v3.4.0模型
http://ltp.ai/
分句
from pyltp import SentenceSplitter #分句,对句子进行切分
sentence = SentenceSplitter.split("我是逗号,我是句号。我是问好?我是感叹号!")
print("\n".join(sentence))
打印结果:
我是逗号,我是句号。
我是问好?
我是感叹号!
分词
import os

LTP_DATA_DIR = "/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0" #ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, "cws.model") #分词模型路径,模型名称为“cws.model”
from pyltp import Segmentor #分词
segmentor = Segmentor() #初始化实例
segmentor.load(cws_model_path) #加载模型
words = segmentor.segment("上海明天天气怎么样?") #进行分词
print(type(words))
print(" ".join(words))
segmentor.release() #释放模型
打印结果:
<class 'pyltp.VectorOfString'>
上海 明天 天气 怎么样 ?
添加自定义词典

自定义词典lexicon.txt

苯丙胺
亚硝酸盐
import os
LTP_DATA_DIR='/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0' # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model') # 分词模型路径,模型名称为`cws.model` from pyltp import Segmentor
segmentor = Segmentor() # 初始化实例
segmentor.load_with_lexicon(cws_model_path, 'lexicon.txt') # 加载模型,第二个参数是您的外部词典文件路径
words = segmentor.segment('亚硝酸盐是一种化学物质')
print('\t'.join(words))
segmentor.release()
打印结果:
[INFO] 2018-08-16 19:18:03 loaded 2 lexicon entries
亚硝酸盐 是 一 种 化学 物质
词性标注
import os
LTP_DATA_DIR = "/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0" #ltp模型目录的路径
pos_model_path = os.path.join(LTP_DATA_DIR, "pos.model") # 词性标注模型路径,>模型名称为`pos.model`
from pyltp import Postagger #词性标注 postagger = Postagger() #初始化实例
postagger.load(pos_model_path) #加载模型
words = ['上海','明天','天气','怎么样'] #分词结果
postages = postagger.postag(words) #词性标注
print(" ".join(postages))
postagger.release() #释放模型
打印结果:
ns nt n r
命名实体识别
import os
LTP_DATA_DIR = "/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0" #ltp模型目录的路径
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model') # 命名实体识别模型路径,模型名称为`pos.model` from pyltp import NamedEntityRecognizer
recognizer = NamedEntityRecognizer() # 初始化实例
recognizer.load(ner_model_path) # 加载模型 words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
netags = recognizer.recognize(words, postags) # 命名实体识别 print('\t'.join(netags))
recognizer.release() # 释放模型
打印结果:
S-Nh O O O
依存句法分析
mport os
LTP_DATA_DIR='/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0' # ltp模型目录的路径
par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model') # 依存句法分析模型路径,模型名称为`parser.model` from pyltp import Parser
parser = Parser() # 初始化实例
parser.load(par_model_path) # 加载模型 words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
arcs = parser.parse(words, postags) # 句法分析 print(" ".join("%d:%s" % (arc.head, arc.relation) for arc in arcs))
parser.release() # 释放模型
打印结果:
4:SBV 4:SBV 4:ADV 0:HED
语义角色标注
import os
LTP_DATA_DIR='/home/lizhenlong/pyltp/ltp_data_v3.4.0/ltp_data_v3.4.0' # ltp模型目录的路径
srl_model_path = os.path.join(LTP_DATA_DIR, 'pisrl_win.model') # 语义角色标注模型目录路径,模型目录为`srl`。注意该模型路径是一个目录,而不是一个文件。 from pyltp import SementicRoleLabeller
labeller = SementicRoleLabeller() # 初始化实例
labeller.load(srl_model_path) # 加载模型 words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']
# arcs 使用依存句法分析的结果
roles = labeller.label(words, postags, arcs) # 语义角色标注 # 打印结果
for role in roles:
print(role.index, "".join(["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))
labeller.release() # 释放模型
打印结果:
[dynet] random seed: 1676210130
[dynet] allocating memory: 2000MB
[dynet] memory allocation done.
3 A0:(1,1)ADV:(2,2)

例如上面的例子,由于结果输出一行,所以“元芳你怎么看”有一组语义角色。 其谓词索引为3,即“看”。这个谓词有三个语义角色,范围分别是(0,0)即“元芳”,(1,1)即“你”,(2,2)即“怎么”,类型分别是A0、A0、ADV。

角色关系参考:https://ltp.readthedocs.io/zh_CN/latest/appendix.html#id6

python3调用哈工大ltp的更多相关文章

  1. 使用哈工大LTP进行句法分析

    作者注:本教程旨在对哈工大LTP在github上的LTP4J(LTP的java版本)教程的补充,请结合以下参考网站一起食用. 参考网站: [1]哈工大语言技术平台云官网--LTP使用文档 http:/ ...

  2. 哈工大LTP

    http://ltp.ai/ http://pyltp.readthedocs.io/zh_CN/latest/ http://www.cnblogs.com/Denise-hzf/p/6612886 ...

  3. Python3调用Hadoop的API

    前言: 上一篇文章 我学习使用pandas进行简单的数据分析,但是各位...... Pandas处理.分析不了TB级别数据的大数据,于是再看看Hadoop. 另附上人心不足蛇吞象 对故事一的感悟:   ...

  4. python3 调用 salt-api

    使用python3调用 salt-api 在项目中我们不能使用命令行的模式去调用salt-api,所以我们可以写一个基于salt-api的类,方便项目代码的调用.在这里特别附上两种方式实现的pytho ...

  5. 3. 哈工大LTP解析

    1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 哈工大语言技术平台Language Technology ...

  6. python3 调用 beautifulSoup 进行简单的网页处理

    python3 调用 beautifulSoup 进行简单的网页处理 from bs4 import BeautifulSoup file = open('index.html','r',encodi ...

  7. 利用python3 调用zabbix接口完成批量加聚合图形(screens)

    在上一篇博客中,我们完成的利用python3 调用zabbix接口批量增加主机,增加主机的item,增加主机的图形! 接下来我们完成批量增加主机的screen 首先我们要增加screen需要哪些参数呢 ...

  8. Python3调用hessian

    领导派了个任务,实现服务器日志文件调用hessian接口保存到数据库 研究了半天python调用hessian的办法 首先使用hessian for python的链接: http://hessian ...

  9. 哈工大LTP进阶使用-三元组事件抽取

    哈工大LTP基本使用-分词.词性标注.依存句法分析.命名实体识别.角色标注 上一节我们讲了LTP的基本使用,接下来我们使用其进行事件抽取. 参考代码:https://github.com/liuhua ...

随机推荐

  1. [MySQL实践] 实践记录

    [MySQL实践] 实践记录 版权2019.5.17更新 MySQL MySQL各版本区别 一.选择的版本 1. MySQL Community Server 社区版本,开源免费,但不提供官方技术支持 ...

  2. 洛谷P3413 SAC#1 - 萌数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...

  3. 1070 结绳 (25 分)C语言

    给定一段一段的绳子,你需要把它们串成一条绳.每次串连的时候,是把两段绳子对折,再如下图所示套接在一起.这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连.每次串连后,原来两段绳子的长度 ...

  4. Node.js 模块系统入门

    在编程领域中,模块是自包含的功能单元,可以跨项目共享和重用.它们使开发人员的生活更加轻松,因为我们可以使用它来增加应用程序的功能,而不必亲自编写这些功能.它还让我们可以组织和解耦代码,从而使应用程序更 ...

  5. deepin idea2019注册码

    找了好久终于找到能用的注册码了https://blog.csdn.net/zixiao217/article/details/82942476第一个好像是已经过期了,然后试了下第二个发现可以直接官网下 ...

  6. 欧拉-拉格朗日方程 The Euler-Lagrange Equation

    在 paper: Bounded Biharmonic Weights for Real-Time Deformation 中第一次接触到 Euler-Lagrange 方程,简单记录一下. 泛函的定 ...

  7. spring boot学习笔记(2)

    Spring boot集成mybatis的三种方式 一.XML文件 在pom文件里面引入mybatis和数据库的依赖 在application.properties中加入数据源配置 其他和ssm配置完 ...

  8. DevExpress 控件用法笔记(VB)

    1.ChartControl 显示条形图 ChartControl1.Titles.Clear() ChartControl1.Series.Clear() Dim db As DataTable S ...

  9. 重拾c++第三天(5):循环和关系表达式

    1.改变步长 ;i<;i=i+) 2.*与++优先级相同,从右向左 3.strcmp函数比较两个字符串,=0两个相同,><0 ----> str1><str2 4. ...

  10. 最小生成树kruskal 知识点讲解+模板

    0.前言 因为本人太蒟了 我现在连NOIP的初赛都在胆战心惊 并且我甚至连最小生成树都没有学过 所以这一篇博客一定是最详细的QAQ 哈哈 请您认真看完如果有疏漏之处敬请留言指正 感谢! Thanks♪ ...