Longge's problem
求\(\sum_{i=1}^ngcd(i,n)\),\(n< 2^{31}\)。
解
理解1:
注意式子的实际意义,显然答案只可能在n的约数中,而现在问题变成了每个约数出现了几次,而一个约数d要出现的次数,自然需要这个数有约数d,其他的约数与之互斥,于是考虑欧拉函数,故我们有
\]
以此枚举n的约数爆算即可,时间复杂度不难得知为\(O(\sigma(n)\sqrt{n})\)。
理解2:
约数计数问题,考虑反演,于是有
\]
设
\]
\]
由Mobius反演定理,带入原式我们有
\]
\]
同理解1做法即可。
于是我们可以小结一下,同排列组合一样,约数计数问题,也有它的实际意义的理解,两者侧重点不同,一个侧重思维,一个侧重代数变换,但是殊途同归,而且不难得知最后的答案其实就是\(\varphi *id\),我们可以使用杜教筛对之优化,数据范围可以出到\(10^{11}\),但无论如何,重点都在于对于约数的巧妙的理解。
参考代码:
#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
using namespace std;
il ll Phi(ll);
int main(){
ll ans,n,i;
while(scanf("%lld",&n)!=EOF){
for(ans&=0,i=1;i*i<n;++i)
if(!(n%i)){
ans+=(n/i)*Phi(i);
ans+=(i)*Phi(n/i);
}
if(i*i==n)ans+=i*Phi(i);
printf("%lld\n",ans);
}
return 0;
}
il ll Phi(ll n){
ri ll i,ans(n);
for(i=2;i<=n/i;++i)
if(!(n%i)){
(ans/=i)*=(i-1);
while(!(n%i))n/=i;
}if(n>1)(ans/=n)*=(n-1);
return ans;
}
Longge's problem的更多相关文章
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- POJ2480 Longge's problem
题意 Language:Default Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1064 ...
- poj 2480 Longge's problem 欧拉函数+素数打表
Longge's problem Description Longge is good at mathematics and he likes to think about hard mathem ...
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- poj2480——Longge's problem(欧拉函数)
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9190 Accepted: 3073 ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- Longge's problem(欧拉函数应用)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...
- 题解报告:poj 2480 Longge's problem(欧拉函数)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
随机推荐
- Spring声明式事务的实现方式选择(JDK动态代理与cglib)
1.简介 Spring声明式事务的具体实现方式是动态决定的,与具体配置.以及事务代理对象是否实现接口等有关. 2.使用JDK动态代理的情况 在满足下面两个条件时,Spring会选择JDK动态代理作为声 ...
- StringUtils里的isEmpty方法和isBlank方法的区别
原文地址:https://blog.csdn.net/a1102325298/article/details/80410740 isEmpty public static boolean isEmpt ...
- Windows系统下安装MySQL 8.0.11数据库
MySQL数据库是常用的数据库之一,而且该数据库开源免费,所以很多公司在使用.本文记录如何在Windows系统下安装MySQL数据库,本次安装的版本号为8.0.11,这个版本是当前的最新版本,据宣传, ...
- 2D转换中的translate里调用matrix()的用法
一开始,经常看到大佬们用matrix的方法,当时完全不会,不知道如何写.到后面,发现都是这样用,导致只能去认真看一下这个东西怎么用,要不然完全跟不上的节奏啊.因此建议大家去看下这篇文章,写的挺不错的, ...
- scala 常用模式匹配类型
模式匹配的类型 包括: 常量模式 变量模式 构造器模式 序列模式 元组模式 变量绑定模式等. 常量模式匹配 常量模式匹配,就是在模式匹配中匹配常量 objectConstantPattern{ def ...
- Spring Cloud Eureka 注册安全一定要做到位!
/eureka/ 参考配置如下: defaultZone: http://javastack:javastack@eureka1:8761/eureka/, http://javastack:java ...
- 【POJ】1426 Find The Multiple
题目链接:http://poj.org/problem?id=1426 题意:给定一个正整数n,找一个比n大且能只由01构成的且能够被n整除的数. 题解:这个就是在后面添0和添1小心试探.一定要是添0 ...
- PHP算法之增减字符串匹配
给定只含 "I"(增大)或 "D"(减小)的字符串 S ,令 N = S.length. 返回 [0, 1, ..., N] 的任意排列 A 使得对于所有 i ...
- AM8不能下任何载附件及所有聊天记录无法登记
问题描述: 接收附件时,点击打开或者下载都不成功,但可以发送消息和附件.但在消息管理器中,也查询不到发送和接收的消息 原因分析:此问题是windows开机登录用户权限问题(若 登录的账号是 whx), ...
- css---文本新增样式
opacity属性指定了一个元素的透明度 默认值:1.0 不可继承 兼容性不是太好 兼容性写法 opacity{ opacity:0.5; filter:alpha(opacity=); //f ...