【SDOI2015】约数个数和
题面
求\(\sum_{i=1}^n\sum_{j=1}^md(ij)\)
\(\leq 50000\)组数据,\(1\leq n,m\leq 50000\)。
题目分析
首先,你需要知道一个结论:
\]
你可以认为\(x,y\)表示你选择的因数为\(\frac i x \cdot y\),即:\(x\)表示\(i\)中不要的部分,\(y\)表示\(j\)中要的部分。
如果\(gcd(x,y)==p_i\),那么\(\frac i x\)表示在约数中拿掉\(p_i\),\(y\)表示在约数中加入\(p_i\),这样一拿一加,自然会在答案中重复。
那么,现在我们的问题转化为求
\]
这样还是无法计算,所以我们把枚举因数提前
\]
现在看起来就可以反演了,设\(f(x)\)表示\(gcd(i,j)==x\)时的答案,\(g(x)\)表示\(gcd(i,j)==kx,k\in Z\)时的答案,则:
f(x)&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\lfloor\frac n i\rfloor\lfloor\frac m j\rfloor[gcd(i,j)==x]\\
g(x)&=\sum\limits_{x|d}^nf(d)\\
&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\lfloor\frac n i\rfloor\lfloor\frac m j\rfloor[x|gcd(i,j)]\\
&=\sum\limits_{i=1}^{\lfloor\frac n x\rfloor}\sum\limits_{j=1}^{\lfloor\frac m x\rfloor}\lfloor\frac n {ix}\rfloor\lfloor\frac m {jx}\rfloor\\
&=\sum\limits_{i=1}^{\lfloor\frac n x\rfloor}\lfloor\frac n {ix}\rfloor\sum\limits_{j=1}^{\lfloor\frac m x\rfloor}\lfloor\frac m {jx}\rfloor
\end{split}
\]
比较巧的一点是:\(\sum\limits_{i=1}^n\lfloor\frac n i\rfloor\)可以表示\(1 \sim n\)的约数个数的前缀和。
约数个数可以在线性筛中预处理,原理如下:
对于\(x=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n}\),\(x\)的约数个数为\((a_1+1)\cdot(a_2+1)\cdot(a_3+1)\cdot...\cdot(a_n+1)\)
由于在线性筛中,每个数只会被它最小的质因子更新,所以:
如果\(i\%prime[j]==0\),说明\(i\)中含有\(prime[j]\),此时\(x\)中\(prime[j]\)的个数为\(i\)中\(prime[j]\)的个数\(+1\),\(x\)的约数个数=\(i\)的约数个数/(\(i\)中\(prime[j]\)的个数)*(\(i\)中\(prime[j]\)的个数\(+1\));
如果\(i\%prime[j]!=0\),说明\(prime[j]\)在\(x\)中只有\(1\)个,\(x\)的约数个数=\(i\)的约数个数*\(2\)。
这样一来\(g(x)\)可以进行预处理,然后\(O(1)\)计算。
反演得\(f(x)=\sum\limits_{x|d}^n\mu(\frac dx)g(d)\),为了针对多组数据,整除分块即可。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=50005;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int mu[N],prime[N];
bool vis[N];
int ys[N],lw[N],g[N];
int main(){
mu[1]=g[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i])prime[++prime[0]]=i,mu[i]=-1,ys[i]=2,lw[i]=1;
for(int j=1;j<=prime[0]&&i*prime[j]<=50000;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
ys[i*prime[j]]=ys[i]/(lw[i]+1)*(lw[i]+2);
lw[i*prime[j]]=lw[i]+1;
break;
}
mu[i*prime[j]]=-mu[i];
ys[i*prime[j]]=ys[i]*2,lw[i*prime[j]]=1;
}
mu[i]+=mu[i-1],g[i]=g[i-1]+ys[i];
}
int T=Getint();
while(T--){
int n=Getint(),m=Getint();
if(n>m)swap(n,m);
LL ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(mu[r]-mu[l-1])*g[n/l]*g[m/l];
}
cout<<ans<<'\n';
}
return 0;
}
【SDOI2015】约数个数和的更多相关文章
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Statu ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
随机推荐
- 【.NET类库】通过SharpSocket进行TCP/UDP通信数据传输
类库作用: 用于基于TCP/UDP协议的数据通信,调用简单,高效. 封装了和业务无关的底层细节,让开发人员可以专注于做业务 完善的示例代码: 针对类库的几种用法,都提供了较为详细的示例代码 一.TCP ...
- Greenplum(PostgreSql)中函数内游标的使用实例
直接上代码,具体整体函数定义就不上了,只写关键部分: --定义两个变量 DECLARE CCUR REFCURSOR; -- 游标变量 RECORD1 RECORD; -- 记录变量,用来存储游标遍历 ...
- lasso数学解释
lasso:是L1正则化(绝对值) 注:坐标下降法即前向逐步线性回归 lasso算法:常用于特征选择 最小角算法,由于时间有限没有去好好研究(其实是有点复杂,尴尬)
- C++11多线程程序运行错误
编译没有问题,错误如图: 错误原因: http://stackoverflow.com/questio ... ation-not-permitted gcc4.6以后对于ld自动加上了as-need ...
- Poi设置列样式
最近做的项目中用到Poi导出Excel文件做模板,其中有的列需要设置为文本格式,查资料发现都是给单元格设置样式,由于是模板单元格都没内容,所以不能通过设置单元格式样式的方式操作,网上有说法是不能设置列 ...
- 字符串KMP算法
讲解:http://blog.csdn.net/starstar1992/article/details/54913261 #include <bits/stdc++.h> using n ...
- docker使用gitlab持续集成(1)
修改ssh连接端口vi /etc/ssh/sshd_config 写docker-compose.yml文件配置gitlab version: '3' services: gitlab: image: ...
- ubuntu安装更新命令
ubuntu16.04LTS 进入ubuntu系统后,打开一个终端,如图所示.此时以普通用户身份登录. 由于更新系统需要用到管理员权限,因此要么使用"su -"直接切换到roo ...
- jquery.js和jquery.min.js的区别和springboot整合echarts.min.js
1.区别:jquery官网提供2种jQuery的下载,一种是jquery.js另一种是jquery.min.js文件名不一定完全相同,但通常情况下:jquery.js是完整的未压缩的jQuery库,文 ...
- VBA字典做数据有效性
Private Sub Worksheet_SelectionChange(ByVal Target As Range)If Target.Column = 26 And Range("f& ...