1315E Double Elimination DP 01枚举状态和倍增思想
E. Double Elimination DP 01枚举状态和倍增思想
题意
参考DOTA2双败赛制,一共有\(2^n\)个队打n轮 其中你有k喜欢的队伍,由你掌控比赛的输赢请问比赛中包含你喜欢的队伍的场次最多有多少场
思路
看数据就很DP,但是比赛的时候不知道怎么搞。其实喜欢队伍与否就是一个01状态,每一场比赛的都会尝生一个胜利队伍和一个失败队伍,把这个胜利和失败队伍去和相邻的胜利和失败的队伍去比就会另外一个胜利和失败的队伍,这样就可以用倍增的思想去定义状态。
我们定状态为\(dp[i][j][x][y]\)从j出发长度为\(2^i\)的比赛队伍产生的胜者队伍是否为关注的队伍,x=1表示是,0表示不是,败者队伍同理那么转移就可以很方便得列举出来。
转移为 \(dp[i-1][j][x1][y1]\)和\(dp[i-1][j+(1<<(i-1))][x2][y2]\)进行比赛,列举他们的状态进行合并,首先是x1和x1比以及y1和y2比 这样关注的队伍的比赛场次为\(dp[i-1][j][x1][y1]+dp[i-1][j+(1<<(i-1))][x2][y2]+int(x1||x2)+int(y1||y2)\)以及还要根据比赛的具体结果看决出败者的时候是否有关注的队伍,有就要加1,一共8种状态,可以画图找一找
这样复杂度就是\(O(2^{17}*17*8*8)\)
本地只要想到把喜欢与否转变为01状态并且有倍增的思想,那么列出状态后进行转移就相对较为简单,初始化的时候需要把所以dp值初始化成一个非常小的数字,防止进行非法转移,刚开始设置成-1 发生了非法转移样例1都过不去QAQ
#include<bits/stdc++.h>
#define pb push_back
#define mkp make_pair
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int maxn=(1<<17)+1;
int dp[17][maxn][2][2];
int vis[maxn];
int n,k;
void init(){
for(int i=1;i<=n;i++){
for(int j=0;j<(1<<n);j+=(1<<i)){
for(int x=0;x<2;x++)
for(int y=0;y<2;y++)dp[i][j][x][y]=-maxn;
}
}
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=k;i++){
int x;
scanf("%d",&x);
vis[x-1]=1;
}
//memset(dp,-1,sizeof(dp));
init();
for(int i=1;i<=n;i++){
for(int j=0;j<(1<<n);j+=(1<<i)){
if(i==1){
for(int x1=0;x1<2;x1++){
for(int y1=0;y1<2;y1++){
if(vis[j]+vis[j+1]==x1+y1){
dp[i][j][x1][y1]=(vis[j]+vis[j+1])>0?1:0;
}
}
}
}
else {
for(int x1=0;x1<2;x1++){
for(int y1=0;y1<2;y1++){
for(int x2=0;x2<2;x2++){
for(int y2=0;y2<2;y2++){
int num=dp[i-1][j][x1][y1]+dp[i-1][j+(1<<(i-1))][x2][y2];
if(x1||x2)num++;
if(y1||y2)num++;
dp[i][j][x1][y1]=max(dp[i][j][x1][y1],num+((x2+y1)>0?1:0));
dp[i][j][x1][y2]=max(dp[i][j][x1][y2],num+((x2+y2)>0?1:0));
dp[i][j][x2][y1]=max(dp[i][j][x2][y1],num+((x1+y1)>0?1:0));
dp[i][j][x2][y2]=max(dp[i][j][x2][y2],num+((x1+y2)>0?1:0));
dp[i][j][x1][x2]=max(dp[i][j][x1][x2],num+((x2+y1)>0?1:0));
dp[i][j][x1][x2]=max(dp[i][j][x1][x2],num+((x2+y2)>0?1:0));
dp[i][j][x2][x1]=max(dp[i][j][x2][x1],num+((x1+y1)>0?1:0));
dp[i][j][x2][x1]=max(dp[i][j][x2][x1],num+((x1+y2)>0?1:0));
}
}
}
}
}
}
}
int ans=0;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
ans=max(ans,dp[n][0][i][j]+(i+j>0?1:0));
}
}
printf("%d\n",ans);
return 0;
}
最后感谢qscqesze的题解,感兴趣的可以去B站直接搜这个名字哦
1315E Double Elimination DP 01枚举状态和倍增思想的更多相关文章
- 【POJ 2411】【Mondriaans Dream】 状压dp+dfs枚举状态
题意: 给你一个高为h,宽为w的矩阵,你需要用1*2或者2*1的矩阵填充它 问你能有多少种填充方式 题解: 如果一个1*2的矩形横着放,那么两个位置都用二进制1来表示,如果是竖着放,那么会对下一层造成 ...
- poj 2923 状压dp+01背包
好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态 ...
- USACO Money Systems Dp 01背包
一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...
- 树形DP +01背包(HDU 1011)
题意:有n个房间,有n-1条道路连接着n个房间,每个房间都有若干个野怪和一定的能量值,有m个士兵从1房间入口进去,到达每个房间必须要留下若干士兵杀死所有的野怪,然后其他人继续走,(一个士兵可以杀死20 ...
- BZOJ 2748: [HAOI2012]音量调节【二维dp,枚举】
2748: [HAOI2012]音量调节 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2010 Solved: 1260[Submit][Statu ...
- UVA.10130 SuperSale (DP 01背包)
UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状压dp终极篇(状态转移的思想)
状压dp是将每种状态都压缩成用一个二进制串,然后利用位运算进行操作的dp,而凡是dp都需要进行状态转移 对于简单的dp问题只需要一个二维数组dp[ i ][ j ]就能解决 具体操作为首先把状态压缩为 ...
- HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)
HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...
随机推荐
- .NET Core之单元测试(一):入门
目录 什么是单元测试 .NET Core中的测试框架 一个最基础的单元测试 我们再看看上面的代码 什么是单元测试 单元测试是对软件中的最小可测试单元进行检查和验证.对于单元测试,要保证测试粒度足够小, ...
- light oj1028 - Trailing Zeroes (I)
1028 - Trailing Zeroes (I) We know what a base of a number is and what the properties are. For exa ...
- WebAPI中的定时处理-使用Quartz.Net
借鉴: https://blog.csdn.net/lordwish/article/details/78926252 在最近的一篇文章中讲到了如何在web API中实现定时处理,采用的是比较原始的T ...
- C#设计模式学习笔记:(18)状态模式
本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/8032683.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲行为型设计模式的第六个模式--状 ...
- C# 利用委托事件进行窗体间的传值(简化)
定义委托 public delegate void SendMessageToChildForms(string s); //定义了一个参数是string ,无返回值的委托,名为 SendMessag ...
- 移动端 location.href 无法成功跳转页面
最近做的移动端页面在请求成功后要跳转页面,通过location.href实现的跳转.但同事在测试时,安卓机可以成功跳转,苹果IOS确无法成功跳转. 解决办法:在链接后面加一个随机参数,这样就可以跳 ...
- Ream--(objc)写事务精简方案
Ream--(objc)写事务精简方案 地址: REALM-- Realm官方提供的的写事务有两种方式: A[realm beginWriteTransaction]; // ... [realm c ...
- 「Flink」Flink中的时间类型
Flink中的时间类型和窗口是非常重要概念,是学习Flink必须要掌握的两个知识点. Flink中的时间类型 时间类型介绍 Flink流式处理中支持不同类型的时间.分为以下几种: 处理时间 Flink ...
- JAVA架构师眼中的高并发架构,分布式架构 应用服务器集群
前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等. 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适 ...
- 安装nanomsg
xftp上传nanomsg安装包 1.解压安装包tar -xvf nanomsg-1.1.0.tar 进入目录cd nanomsg-1.1.0新建安装目录(在nanomsg-1.1.0目录下)mkdi ...