一类Log-Gamma积分的一般形式
\[\Large\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x~,~z>0\, ,\, t\in N^{*}\]
\(\Large\mathbf{Solution:}\)
Notice that
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x&=\int_{0}^{z}x^{t}\ln\Big[ x\Gamma \left ( x \right ) \Big]\mathrm{d}x=\int_{0}^{z}x^{t}\ln x\mathrm{d}x+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x\\
&=\frac{z^{1+t}\Big[\left ( 1+t \right )\ln z-1\Big]}{\left ( 1+t \right )^{2}}+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x
\end{align*}\]
Using the Kummer's Fourier Series of \(\displaystyle \ln \Gamma(x)\) and
\[\sum_{n=1}^{\infty }\frac{\cos\left ( 2\pi nx \right )}{2n}=-\frac{1}{2}\ln\left ( 2\sin\pi x \right )~,~\sum_{n=1}^{\infty }\frac{\sin\left ( 2\pi nx \right )}{2n}=\frac{1}{2}-x\]
we have
\[\ln\Gamma \left ( x \right )=\frac{1}{2}\ln2\pi-\frac{1}{2}\ln\left ( 2\sin\pi x \right )+\left ( \gamma +\ln2\pi \right )\left ( \frac{1}{2}-x \right )+\sum_{n=1}^{\infty }\frac{\ln n}{n\pi }\sin\left ( 2\pi nx \right )\]
Hence we have
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x&=\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}\\
&~~~-\frac{1}{2}\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x+\frac{1}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x
\end{align*}\]
where
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x&=\frac{1}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t}\ln\left ( 2\sin\frac{x}{2} \right )\mathrm{d}x\\
&=-\frac{x^{t}}{\left ( 2\pi \right )^{t+1}}\mathrm{Cl}_{2}\left ( x \right )\Bigg|_{0}^{2\pi z}+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z} x^{t-1}\mathrm{Cl}_{2}\left ( x \right )\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t-1}\sum_{k=1}^{\infty }\frac{\sin kx}{k^{2}}\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\int_{0}^{2\pi z}x^{t-1}\sin kx\mathrm{d}x
\end{align*}\]
for the last integral,it's not hard to see that
\[\begin{align*}
\int_0^{2\pi z}x^{t-1}\sin kx\,\mathrm{d}x&=\left ( t-1 \right )!\,\Bigg[~\sum_{j=0}^{\lfloor {t-1/2} \rfloor}(-1)^{j+1}\frac{x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}\\
&~~~+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}(-1)^{j+1}\frac{x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z}~\Bigg]
\end{align*}\]
let \(t-1=t\) and \(k=2\pi n\) we can evaluate \(\displaystyle \int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x\) .
Now we obtain the result for the initial integral
\[\boxed{\begin{align*}
&\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\\
&\color{blue}{\frac{z^{1+t}\left[\left ( 1+t \right )\ln z-1\right]}{\left ( 1+t \right )^{2}}+\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}}\\
&\color{blue}{+\frac{1}{2}\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )-\frac{t\left ( t-1 \right )!}{2\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\Bigg \{\sum_{j=0}^{\lfloor {t-1/2} \rfloor}\frac{(-1)^{j+1}x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z} \Bigg \}+\frac{t!}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\Bigg \{ \sum_{j=0}^{\lfloor {t/2} \rfloor}\frac{(-1)^{j+1}x^{t-2j}}{\left ( 2\pi n \right )^{2j+1}(t-2j)!}\cos\left ( 2\pi nx \right ) \,\Biggr|_0^{z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-1)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-1}}{\left ( 2\pi n \right )^{2j+2}(t-2j-1)!}\sin \left ( 2\pi nx \right )\,\Biggr|_0^{z} \Bigg\}}
\end{align*}}\]
\(\mathrm{For~example:}\)
\[\color{red}{\int_{0}^{1}x\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{2^{\frac{1}{4}}\pi ^{\frac{1}{4}}}{\mathbf{A}e^{\frac{1}{4}}} \right )}\]
\[\color{red}{\int_{0}^{2}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\frac{4}{3}\ln\left (\frac{8\pi }{\mathbf{A}^{3}} \right )+\frac{\zeta \left ( 3 \right )}{2\pi ^{2}}-\frac{5}{2}}\]
\[\color{red}{\int_{0}^{\frac{1}{2}}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{\mathbf{A}^{\frac{1}{8}}\pi ^{\frac{1}{48}}}{2^{\frac{89}{2880}}} \right )-\frac{5}{8}\zeta '\left ( 3 \right )-\frac{3\zeta \left ( 3 \right )}{32\pi ^{2}}-\frac{3}{128}}\]
一类Log-Gamma积分的一般形式的更多相关文章
- 两个Beta函数类型的积分及其一般形式
\[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...
- LDA-math-神奇的Gamma函数
http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...
- 各类分布----二项分布,泊松分布,负二项分布,gamma 分布,高斯分布,学生分布,Z分布
伯努利实验: 如果无穷随机变量序列 是独立同分布(i.i.d.)的,而且每个随机变量 都服从参数为p的伯努利分布,那么随机变量 就形成参数为p的一系列伯努利试验.同样,如果n个随机变量 独立同 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文很长,但是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同时也因 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文非常长.可是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同一时 ...
- [译]如何禁止Requests库的log日志信息呢?
原文来源: https://stackoverflow.com/questions/11029717/how-do-i-disable-log-messages-from-the-requests-l ...
- Android 项目Log日志输出优化
概述 Android开发过程中经常需要向控制台输出日志信息,有些人还在用Log.i(tag,msg)的形式或者system.out.println(msg)方式吗?本篇文章对日志信息输出进行优化,以达 ...
- AOPS论坛上100+100个积分
100+10 rare and irresistible integrals I bring you many beautiful integrals that I have collected ov ...
- Matlab 矩阵运算
1.Syms 和sym的区别: syms是定义多个符号是符号变量的意思 sym只能定义一个符号变量,但可以具体到这个符号变量的内容 例:syms f z; %定义下x和y f=sym('a+b+c') ...
随机推荐
- windows10打开switchHost,提示无修改权限
1.在C盘找到hsot文件,点击属性,去掉只读,去掉勾选. 点击编辑 点击Users,选择完全控制,这回降低电脑安全! 确定.
- FTP服务:使用 vsftpd 服务传输文件
1.文件传输协议 今天的互联网是由几千万台个人计算机.工作站.服务器.小型机.大型 机.巨型机等具有不同型号.不同架构的物理设备共同组成的,而且即便是个人计算机,也 可能会装有 Windows.Lin ...
- arcgis中的Join(合并连接)和Relate(关联连接)
arcgis中的Join(合并连接)和Relate(关联连接) 一.区别 1.连接关系不一样. Relate(关联连接)方式连接的两个表之间的记录可以是“一对一”.“多对一”.“一对多”的关系 Joi ...
- 主席树 hdu 4348
题意:有一个由n个数组成的序列,有4中操作: 1.C l r d [l,r]这段区间都加上d 2.Q l r 询问[l,r]这段区间的和 3.H l r t 询问之前t时间[l,r]的区间和 4.B ...
- python 网页中文显示Unicode码
print repr(a).decode("unicode–escape") 注:a是要输出的结果,
- 【PAT甲级】1109 Group Photo (25分)(模拟)
题意: 输入两个整数N和K(N<=1e4,K<=10),分别表示人数和行数,接着输入N行每行包括学生的姓名(八位无空格字母且唯一)和身高([30,300]的整数).按照身高逆序,姓名字典序 ...
- 每天进步一点点------Alpha半透明图形叠加算法Matlab+Verilog实现
Alpha图形叠加算法Matlab+Verilog实现 1.1. Alpha算法的研究 Alpha通道是一个8位的灰度通道,该通道用256级灰度来记录图像中的透明度信息,定义透明.不透明和半透明区域, ...
- 每天进步一点点------Altium Designer集成库简介及创建
一.集成库概述 Altium Designer 采用了集成库的概念.在集成库中的元件不仅具有原理图中代表元件的符号,还集成了相应的功能模块.如Foot Print 封装,电路仿真模块,信号完整性 ...
- selenium+python自动化用例登陆界面模板
一.基本逻辑 1.自动填写用户名和密码登录成功后跳转到相应页面 2.验证相应页面的url与给定的url是否一致,如果一致则测试通过,如果不一致则不通过 二.以jenkins登陆界面为例,代码如下 fr ...
- mybatis用mysql数据库自增主键,插入一条记录返回新增记录的自增主键ID
今天在敲代码的时候遇到一个问题,就是往数据库里插入一条记录后需要返回这个新增记录的ID(自增主键), 公司框架用的是mybatis的通用Mapper接口,里面的插入方法貌似是不能把新纪录的ID回填到对 ...