一类Log-Gamma积分的一般形式
\[\Large\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x~,~z>0\, ,\, t\in N^{*}\]
\(\Large\mathbf{Solution:}\)
Notice that
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x&=\int_{0}^{z}x^{t}\ln\Big[ x\Gamma \left ( x \right ) \Big]\mathrm{d}x=\int_{0}^{z}x^{t}\ln x\mathrm{d}x+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x\\
&=\frac{z^{1+t}\Big[\left ( 1+t \right )\ln z-1\Big]}{\left ( 1+t \right )^{2}}+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x
\end{align*}\]
Using the Kummer's Fourier Series of \(\displaystyle \ln \Gamma(x)\) and
\[\sum_{n=1}^{\infty }\frac{\cos\left ( 2\pi nx \right )}{2n}=-\frac{1}{2}\ln\left ( 2\sin\pi x \right )~,~\sum_{n=1}^{\infty }\frac{\sin\left ( 2\pi nx \right )}{2n}=\frac{1}{2}-x\]
we have
\[\ln\Gamma \left ( x \right )=\frac{1}{2}\ln2\pi-\frac{1}{2}\ln\left ( 2\sin\pi x \right )+\left ( \gamma +\ln2\pi \right )\left ( \frac{1}{2}-x \right )+\sum_{n=1}^{\infty }\frac{\ln n}{n\pi }\sin\left ( 2\pi nx \right )\]
Hence we have
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x&=\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}\\
&~~~-\frac{1}{2}\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x+\frac{1}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x
\end{align*}\]
where
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x&=\frac{1}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t}\ln\left ( 2\sin\frac{x}{2} \right )\mathrm{d}x\\
&=-\frac{x^{t}}{\left ( 2\pi \right )^{t+1}}\mathrm{Cl}_{2}\left ( x \right )\Bigg|_{0}^{2\pi z}+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z} x^{t-1}\mathrm{Cl}_{2}\left ( x \right )\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t-1}\sum_{k=1}^{\infty }\frac{\sin kx}{k^{2}}\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\int_{0}^{2\pi z}x^{t-1}\sin kx\mathrm{d}x
\end{align*}\]
for the last integral,it's not hard to see that
\[\begin{align*}
\int_0^{2\pi z}x^{t-1}\sin kx\,\mathrm{d}x&=\left ( t-1 \right )!\,\Bigg[~\sum_{j=0}^{\lfloor {t-1/2} \rfloor}(-1)^{j+1}\frac{x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}\\
&~~~+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}(-1)^{j+1}\frac{x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z}~\Bigg]
\end{align*}\]
let \(t-1=t\) and \(k=2\pi n\) we can evaluate \(\displaystyle \int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x\) .
Now we obtain the result for the initial integral
\[\boxed{\begin{align*}
&\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\\
&\color{blue}{\frac{z^{1+t}\left[\left ( 1+t \right )\ln z-1\right]}{\left ( 1+t \right )^{2}}+\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}}\\
&\color{blue}{+\frac{1}{2}\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )-\frac{t\left ( t-1 \right )!}{2\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\Bigg \{\sum_{j=0}^{\lfloor {t-1/2} \rfloor}\frac{(-1)^{j+1}x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z} \Bigg \}+\frac{t!}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\Bigg \{ \sum_{j=0}^{\lfloor {t/2} \rfloor}\frac{(-1)^{j+1}x^{t-2j}}{\left ( 2\pi n \right )^{2j+1}(t-2j)!}\cos\left ( 2\pi nx \right ) \,\Biggr|_0^{z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-1)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-1}}{\left ( 2\pi n \right )^{2j+2}(t-2j-1)!}\sin \left ( 2\pi nx \right )\,\Biggr|_0^{z} \Bigg\}}
\end{align*}}\]
\(\mathrm{For~example:}\)
\[\color{red}{\int_{0}^{1}x\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{2^{\frac{1}{4}}\pi ^{\frac{1}{4}}}{\mathbf{A}e^{\frac{1}{4}}} \right )}\]
\[\color{red}{\int_{0}^{2}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\frac{4}{3}\ln\left (\frac{8\pi }{\mathbf{A}^{3}} \right )+\frac{\zeta \left ( 3 \right )}{2\pi ^{2}}-\frac{5}{2}}\]
\[\color{red}{\int_{0}^{\frac{1}{2}}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{\mathbf{A}^{\frac{1}{8}}\pi ^{\frac{1}{48}}}{2^{\frac{89}{2880}}} \right )-\frac{5}{8}\zeta '\left ( 3 \right )-\frac{3\zeta \left ( 3 \right )}{32\pi ^{2}}-\frac{3}{128}}\]
一类Log-Gamma积分的一般形式的更多相关文章
- 两个Beta函数类型的积分及其一般形式
\[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...
- LDA-math-神奇的Gamma函数
http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...
- 各类分布----二项分布,泊松分布,负二项分布,gamma 分布,高斯分布,学生分布,Z分布
伯努利实验: 如果无穷随机变量序列 是独立同分布(i.i.d.)的,而且每个随机变量 都服从参数为p的伯努利分布,那么随机变量 就形成参数为p的一系列伯努利试验.同样,如果n个随机变量 独立同 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文很长,但是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同时也因 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文非常长.可是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同一时 ...
- [译]如何禁止Requests库的log日志信息呢?
原文来源: https://stackoverflow.com/questions/11029717/how-do-i-disable-log-messages-from-the-requests-l ...
- Android 项目Log日志输出优化
概述 Android开发过程中经常需要向控制台输出日志信息,有些人还在用Log.i(tag,msg)的形式或者system.out.println(msg)方式吗?本篇文章对日志信息输出进行优化,以达 ...
- AOPS论坛上100+100个积分
100+10 rare and irresistible integrals I bring you many beautiful integrals that I have collected ov ...
- Matlab 矩阵运算
1.Syms 和sym的区别: syms是定义多个符号是符号变量的意思 sym只能定义一个符号变量,但可以具体到这个符号变量的内容 例:syms f z; %定义下x和y f=sym('a+b+c') ...
随机推荐
- data-dismiss="modal"
提交按钮不加: 加上则不会出现提示,直接关闭弹出框 <div class="modal fade" id="myModal" tabindex=" ...
- JFrog推出全球首个支持混合云架构,端到端的通用DevOps平台 ——JFrog Platform
JFrog Platform,基于屡获殊荣的JFrog Artifactory制品仓库的独特能力,通过多合一的体验提供DevSecOps.CI / CD和软件分发的解决方案. 2020 ...
- Java初识与配置环境
Java初识 Java简介 Java是一门面向对象的程序设计语言.功能强大并且简单易用,极好的实现了面向对象理论.允许程序以类似人类的思维方式进行复杂的编程. Java具有简单性.面向对象.分布式.健 ...
- Bridge(Ad Hoc)
- SaltStack自动化软件简介及安装
==================================================================================================== ...
- js面向过程 分页功能
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- IntelliJ IDEA 2017.3尚硅谷-----设置超过指定 import 个数,改为*
(可忽略)
- 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型
from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...
- Linux - curl 基本使用
1. 概述 我接触过的很多服务端调试, 接口测试, 最终都落到了这个地方 简答介绍 curl 的使用 尽量循序渐进, 因为我也不太熟悉 大概会提到的命令 curl curl -v curl -s cu ...
- 解决laravel出现Syntax error or access violation: 1055 '***' isn't in GROUP BY
laravel 5.3 以后默认开启 mysql严格模式(strict)在mysql在严格模式下, 并且开启了ONLY_FULL_GROUP_BY的情况下,group by 的字段没有出现在 sele ...