HDU4352 XHXJ's LIS 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352
题目大意:
求区间 \([L,R]\) 范围内最长上升子序列(Longest increasing subsequence,简称LIS)长度为 \(k\) 的数的数量。
举个例子:
\(123\) 的LIS只有一个\(123\),所以它的LIS的长度是 \(3\);
\(101\) 的LIS只有一个\(01\),所以它的LIS的长度是 \(2\);
\(132\) 的LIS有\(13\)和\(12\),所以它的LIS的长度是 \(2\)。
现在每次给你三个数 \(L,R,k\) ,你要求区间 \([L,R]\) 范围内LIS长度为 \(k\) 的数有多少个。
解题思路:
本题使用 数位DP 进行求解。
但是我觉得比较必要的先决条件是:你要对如何 使用二分的方法求解LIS 有一个比较深刻的理解!
虽然这并不是必须的,但是这能够帮助你理解状态转移的过程。
设状态 \(dp[pos][sta][k]\) 表示对于当前的这个 \(k\):
- 当前所处的数位为 \(pos\),
- 当前LIS的状态为 \(sta\)
时的数量。
\(sta\) 涉及状态压缩的思想,他表示当前LIS中的元素由哪些组成。
一开始初始时候的 \(sta\) 为 \(0000000000\)(10个\(0\))。
在某一阶段,
如果当前已经选择了 \(a[0]\), \(a[1]\) 和 \(a[3]\) ,那么当前的状态就是 \(0000001011\);
如果当前已经选择了 \(a[2]\), \(a[4]\) 和 \(a[7]\) ,那么当前的状态就是 \(0010010100\)。
接下来我们来举例一个数 \(15234\) 来演示我们数位DP的过程:
初始时 \(sta\) 为 \(0000000000\);
加入 \(1\) ,此时状态变成 \(0000000010\);
加入 \(5\) ,此时状态变成 \(0000100010\);
加入 \(2\) ,此时状态变成 \(0000000110\),
注意:这里是最重要的地方!!
为什么加入 \(2\) 之后 \(5\) 对应的位置会变成 \(0\) 呢?
因为我们这里记录的状态就是我们二分LIS对应的状态,
刚加入 \(5\) 的时候,状态是 \(0000100010\) ,它表示新加入的元素要构成一个长度为 \(2\) 的LIS,必须比 \(1\) 大,
新加入的元素要构成一个长度为 \(3\) 的LIS,必须比 \(5\) 大。
而加入 \(2\) 之后,情况就大大改观了,因为此时要构成一个长度为 \(2\) 的LIS,只需要比 \(2\) 大就可以了。
所以对于当前状态 \(sta\) 和当前数位要放的数字 \(i\) ,
如果 \(sta\) 的第 \(i\) 位为 \(1\) ,那么新的状态仍旧是 \(sta\)(因为LIS中存在 \(i\));
如果 \(sta\) 的第 \(i\) 为为 \(0\) ,那么:
- 如果 \(sta\) (没有特别强调都是指二进制)中没有任何比 \(i\) 大的位上为 \(1\) ,则新状态就是
sta | (1<<i); - 否则,将比 \(i\) 大的最小的那位置为 \(0\),再将第 \(i\) 位置为 \(1\),就是新的状态。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
long long f[22][1030][10];
int n, k, a[22];
void init() {
memset(f, -1, sizeof(f));
}
int new_sta(int pos, int sta, int i) {
if (!sta && i==0 && pos>0) return 0;
if (!(sta>>(i+1)) || (sta&(1<<i))) return sta | (1<<i);
for (int k = k = i+1; k < 10; k ++) if (sta & (1<<k)) return (sta ^ (1<<k)) | (1<<i);
}
long long dfs(int pos, int sta, bool limit) {
if (pos < 0) return __builtin_popcount(sta) == k ? 1 : 0;
if (!limit && f[pos][sta][k] != -1) return f[pos][sta][k];
int up = limit ? a[pos] : 9;
long long tmp = 0;
for (int i = 0; i <= up; i ++) {
tmp += dfs(pos-1, new_sta(pos, sta, i), limit && i==up);
}
if (!limit) f[pos][sta][k] = tmp;
return tmp;
}
long long get_num(long long x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos-1, 0, true);
}
int T;
long long L, R;
int main() {
init();
scanf("%d", &T);
for (int cas = 1; cas <= T; cas ++) {
scanf("%lld%lld%d", &L, &R, &k);
printf("Case #%d: %lld\n", cas, get_num(R) - get_num(L-1));
}
return 0;
}
HDU4352 XHXJ's LIS 题解 数位DP的更多相关文章
- hdu4352 XHXJ's LIS(数位dp)
题目传送门 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 【HDU 4352】 XHXJ's LIS (数位DP+状态压缩+LIS)
XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- 【HDU】4352 XHXJ's LIS(数位dp+状压)
题目 传送门:QWQ 分析 数位dp 状压一下现在的$ O(nlogn) $的$ LIS $的二分数组 数据小,所以更新时直接暴力不用二分了. 代码 #include <bits/stdc++. ...
- HDU - 4352 - XHXJ's LIS(数位DP)
链接: https://vjudge.net/problem/HDU-4352 题意: a 到 b中一个数组成递增子序列长度等于k的数的个数 思路: 因为只有10个数,使用二进制维护一个递增序列,每次 ...
- hdu 4352 XHXJ's LIS (数位dp+状态压缩)
Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...
- HDU 4352 XHXJ's LIS (数位DP,状压)
题意: 前面3/4的英文都是废话.将一个正整数看成字符串,给定一个k,问区间[L,R]中严格的LIS=k的数有多少个? 思路: 实在没有想到字符0~9最多才10种,况且也符合O(nlogn)求LIS的 ...
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]
统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...
随机推荐
- Bootstrap之Form表单验证神器: BootstrapValidator(转)
前言:做Web开发的我们,表单验证是再常见不过的需求了.友好的错误提示能增加用户体验.博主搜索bootstrap表单验证,搜到的结果大部分都是文中的主题:bootstrapvalidator.今天就来 ...
- DispatcherTimer 应用实例
public partial class MainWindow : Window { public MainWindow() { InitializeComponent(); //实例化 Dispat ...
- 2013-4-3 C#中alt键不是Keys.Alt 而是 Keys.LMenu
2013-4-3 C#中alt键不是Keys.Alt而是Keys.LMenu
- H3C 网络号和主机号
- oracle使用TKPROF 工具来查询SQL性能状态
SQL trace 工具收集正在执行的SQL的性能状态数据并记录到一个跟踪文件中. 这个跟踪文件提供了许多有用的信息,例如解析次数.执行次数,CPU使用时间等.这些数据将可以用来优化你的系统. 设置S ...
- 使用模块定义AngularJS组件
一.模块创建/查找 module 当创建一个模块时,必须指定name和requires参数,即使你的模块并不存在依赖 var myApp=angular.module("exampleApp ...
- jieba中文分词源码分析(四)
一.未登录词问题在jieba中文分词的第一节曾提到未登录词问题 中文分词的难点 分词规范,词的定义还不明确 (<统计自然语言处理>宗成庆)歧义切分问题,交集型切分问题,多义组合型切分歧义等 ...
- HTML--表格与表单
一.表格 <table></table>表格 width:宽度.可以用像素或百分比表示. 常用960像素. border:边框,常用值为0. cellpadding:内容跟边框 ...
- Python--day67--内容回顾
- (二)Centos7下Yum更新安装PHP5.5,5.6,7.0
yum源默认的版本太低了,手动安装有一些麻烦,想采用Yum更新安装的可以使用下面的方案: 1.检查当前安装的PHP包 yum list installed | grep php 如果有安装的PHP包, ...