SDUT-2144_最小生成树
数据结构实验之图论九:最小生成树
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。
Input
输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=10000)
剩下m行每行3个正整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c。
Output
每组输出占一行,仅输出最小花费。
Sample Input
3 2
1 2 1
1 3 1
1 0
Sample Output
2
0
题解:prim算法来求最小生成树,同SDUT-3362_村村通公路。
不过这道题更简单点,不用判定是否连通,题目貌似都是连通的数据。
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int s[1050][1050];/*利用邻接矩阵来记录图*/
int n;/*n节点数量*/
int f[1050];/*记录点是否被遍历过*/
int INF = 1e9+7;/*相当于无穷大*/
int prim()
{
int i,sum,j,MIN,k;
int dis[1050];
for(i=1;i<=n;i++)
{
f[i] = 0;
dis[i] = s[1][i];
}
f[1] = 1;
sum = 0;
for(i=1;i<n;i++)
{
MIN = INF;
k = -1;
for(j=1;j<=n;j++)
{
if(!f[j]&&dis[j]<MIN)
{
MIN = dis[j];
k = j;
}
}
f[k] = 1;
sum += MIN;
for(j=1;j<=n;j++)
{
if(!f[j]&&dis[j]>s[k][j])
dis[j] = s[k][j];
}
}
return sum;
}
int main()
{
int m,i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
s[i][j] = i==j?0:INF;
for(i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(c<s[a][b])
s[a][b] = s[b][a] = c;
}
printf("%d\n",prim());
}
return 0;
}
SDUT-2144_最小生成树的更多相关文章
- SDUT图结构练习——最小生成树
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2144&cid=1186 这道题一开始是用prim算法做的,一直错一直错,后来问了帅郭改用 ...
- SDUT 2933-人活着系列Streetlights(最小生成树Kruskal+和理查德设置来实现)
人活着系列之Streetlights Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描写叙述 人活着假设是为了家庭,亲情----能够说 ...
- SDUT OJ 数据结构实验之图论六:村村通公路(最小生成树)
数据结构实验之图论六:村村通公路 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descri ...
- sdut 2805(最小生成树)
大家快来A水题 Time Limit: 1000MS Memory limit: 65536K 题目描写叙述 (1<= N <=2000)(1<= M <= N*(N-1)/2 ...
- 数据结构实验之图论九:最小生成树 (SDUT 2144)
#include<bits/stdc++.h> using namespace std; typedef long long ll; struct node { int s, e; int ...
- Electrification Plan(最小生成树)
http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=50#problem/D 最小生成树模板,注意的是这里有k个发电站,它们不再需要连 ...
- prim算法,克鲁斯卡尔算法---最小生成树
最小生成树的一个作用,就是求最小花费.要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光 ...
- 最小生成树(kruskal模版 Prim模板)
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2144&cid=1186 最小生成树,最重要的是了解思想 稠密图用Prim,稀疏图用Kru ...
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
随机推荐
- 【php实现数据结构】单向链表
什么是单向链表 链表是以链式存储数据的结构,其不需要连续的存储空间,链表中的数据以节点来表示,每个节点由元素(存储数据)和指针(指向后继节点)组成. 单向链表(也叫单链表)是链表中最简单的一种形式,每 ...
- KOA 学习(五)koa常用库koa-swig
koa-swig 引入库app.js var render = require('koa-swig'); 模版设置app.js app.context.render = co.wrap(render( ...
- WCF简要介绍
什么是WCF WCF的全称是:Windows Communication Foundation.从本质上来说,它是一套软件开发包,是微软公司推出的符合SOA思想的技术框架.WCF为程序员提供了丰富的功 ...
- LA3177 Beijing Guards
Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...
- Redis源码解析:12AOF持久化
除了RDB持久化功能之外,Redis还提供了AOF(AppendOnly File)持久化功能.与RDB持久化通过保存数据库中的键值对来记录数据库状态不同,AOF持久化是通过保存Redis服务器所执行 ...
- 前端(jQuery)(9)-- jQuery菜单
1.垂直菜单布局 2.垂直菜单实现 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...
- 整理Mysql无法创建外键的原因
在MySQL中创建外键时,经常会遇到问题而失败,这是因为mysql中还有很多细节需要我们去留意,我自己总结并查阅资料后列出了以下几种常见原因. 1. 两个字段的类型或者大小不严格匹配.例如,如果一个 ...
- 采坑“微信小程序”
1.微信小程序变量定义时中间不能使用 “-”. 2.padding值不能为负.
- 为什么要使用ul li布局网站导航条?使用ul li布局网站网页导航必要性
会布局的都知道网站导航条布局非常重要,可能一个导航条最终布局效果有时可以使用ul li列表标签布局,有时可以不用ul li布局,而是直接一个div盒子里直接放锚文本超链接的栏目名称,也能实现,看下图. ...
- Flask中的session机制
cookie和sessioncookie:网站中,http请求是无状态的,第一次和服务器连接后并且登陆成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是解决了改问题,第一次 ...