rsa加解密的内容超长的问题解决
B,正常加密没有异常。
) {
if (inputLen - offSet > MAX_ENCRYPT_BLOCK) {
cache = cipher.doFinal(data, offSet, MAX_ENCRYPT_BLOCK);
} else {
cache = cipher.doFinal(data, offSet, inputLen - offSet);
}
out.write(cache, cache.length);
i++;
offSet = i * MAX_ENCRYPT_BLOCK;
}
byte[] encryptedData = out.toByteArray();
out.close();
return Base64.encodeBase64String(encryptedData);
将MAX_ENCRYPT_BLOCK值换为64就解决了问题。按报错提示的改为117也可以,不过为了凑整,选择了64。
- 11 = 245,bytes。而分段加密代码中用128为单位分段,从而使得一个密钥报错,另一个不报错。
- 为什么一次加密的数据长度为 (密钥长度/8-11) ?
网上有说明文长度小于等于密钥长度(Bytes)-11,这说法本身不太准确,会给人感觉RSA 1024只能加密117字节长度明文。实际上,RSA算法本身要求加密内容也就是明文长度m必须0<m<n,也就是说内容这个大整数不能超过n,否则就出错。那么如果m=0是什么结果?普遍RSA加密器会直接返回全0结果。如果m>n,由于me ≡
c (mod n),c为密文,m为明文,e和n组成公钥,显然当m>n时,m与m-n得出的密文一样,无法解密,运算就会出错。实际可加密的明文长度最大也是1024bits,但问题就来了:如果小于这个长度怎么办?就需要进行padding,因为如果没有padding,用户无法确分解密后内容的真实长度,字符串之类的内容问题还不大,以0作为结束符,但对二进制数据就很难理解,因为不确定后面的0是内容还是内容结束符。
只要用到padding,那么就要占用实际的明文长度,于是才有117字节的说法。我们一般使用的padding标准有NoPPadding、OAEPPadding、PKCS1Padding等,其中PKCS#1建议的padding就占用了11个字节。
如果大于这个长度怎么办?很多算法的padding往往是在后边的,但PKCS的padding则是在前面的,此为有意设计,有意的把第一个字节置0以确保m的值小于n。
这样,128字节(1024bits)-减去11字节正好是117字节,但对于RSA加密来讲,padding也是参与加密的,所以,依然按照1024bits去理解,但实际的明文只有117字节了。
关于PKCS#1 padding规范可参考:RFC2313 chapter 8.1,我们在把明文送给RSA加密器前,要确认这个值是不是大于n,也就是如果接近n位长,那么需要先padding再分段加密。除非我们是“定长定量自己可控可理解”的加密不需要padding。 - 为什么有不同长度的key?
看一下密钥的生成过程:第一步,随机选择两个不相等的质数p和q。
第二步,计算p和q的乘积n。n即密钥长度。
第三步,计算n的欧拉函数φ(n)。
第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。
第五步,计算e对于φ(n)的模反元素d。
第六步,将n和e封装成公钥,n和d封装成私钥。加密(c为密文,m为明文): me ≡
c (mod n)解密(c为密文,m为明文): cd ≡
m (mod n)对极大整数做因数分解(由n,e推出d)的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。目前一般为1024
bit以上的密钥,推荐2048 bit以上。 - 对称加密vs分对称加密?
对称加密是最快速、最简单的一种加密方式,加密(encryption)与解密(decryption)用的是同样的密钥(secret key)。对称加密有很多种算法,由于它效率很高,所以被广泛使用在很多加密协议的核心当中。对称加密通常使用的是相对较小的密钥,一般小于256 bit。因为密钥越大,加密越强,但加密与解密的过程越慢。密钥的大小既要照顾到安全性,也要照顾到效率,是一个trade-off。对称加密的一大缺点是密钥的管理与分配。非对称加密为数据的加密与解密提供了一个非常安全的方法,它使用了一对密钥,公钥(public key)和私钥(private key)。私钥只能由一方安全保管,不能外泄,而公钥则可以发给任何请求它的人。非对称加密使用这对密钥中的一个进行加密,而解密则需要另一个密钥。虽然非对称加密很安全,但是和对称加密比起来,它非常的慢。将两者结合起来,将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。
rsa加解密的内容超长的问题解决的更多相关文章
- RSA算法原理——(3)RSA加解密过程及公式论证
上期(RSA简介及基础数论知识)为大家介绍了:互质.欧拉函数.欧拉定理.模反元素 这四个数论的知识点,而这四个知识点是理解RSA加密算法的基石,忘了的同学可以快速的回顾一遍. 一.目前常见加密算法简介 ...
- RSA加解密算法以及密钥格式
RSA算法: 有个文章关于RSA原理讲的不错: https://blog.csdn.net/dbs1215/article/details/48953589 http://www.ruanyifeng ...
- 全面解决.Net与Java互通时的RSA加解密问题,使用PEM格式的密钥文件
作者: zyl910 一.缘由 RSA是一种常用的非对称加密算法.所以有时需要在不用编程语言中分别使用RSA的加密.解密.例如用Java做后台服务端,用C#开发桌面的客户端软件时. 由于 .Net.J ...
- openssl在多平台和多语言之间进行RSA加解密注意事项
首先说一下平台和语言: 系统平台为CentOS6.3,RSA加解密时使用NOPADDING进行填充 1)使用C/C++调用系统自带的openssl 2)Android4.2模拟器,第三方openssl ...
- C# 中使用 RSA加解密算法
一.什么是RSA RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制. 在公开密钥密码体制中,加密密钥(即 ...
- PHP RSA加解密示例(转)
1.生成密钥和公钥 开始前需要准备openssl环境 linux 需要安装openssl工具包,传送门http://www.openssl.org/source/ window 下需要安装openss ...
- 调用OpenSSL实现RSA加解密和签名操作
调用OpenSSL实现RSA加解密和签名操作 RSA公钥可以从证书和公钥文件,RSA私钥可以从私钥文件中提取.OpenSSL使用了一种BIO抽象IO机制读写所用文件,可以打开文件相关联的BIO,通过B ...
- 【转】 Java 进行 RSA 加解密时不得不考虑到的那些事儿
[转] Java 进行 RSA 加解密时不得不考虑到的那些事儿 1. 加密的系统不要具备解密的功能,否则 RSA 可能不太合适 公钥加密,私钥解密.加密的系统和解密的系统分开部署,加密的系统不应该同时 ...
- 前后端java+vue 实现rsa 加解密与摘要签名算法
RSA 加密.解密.签名.验签.摘要,前后端java+vue联调测试通过 直接上代码 // 注意:加密密文与签名都是唯一的,不会变化.// 注意:vue 端密钥都要带pem格式.java 不要带pem ...
随机推荐
- Django中间件分析
SessionMiddleware 浏览器会发送包含SESSION_COOKIE_NAME的的Cookie 中间件从django_session中按照SESSION_COOKIE_NAME取出存入的s ...
- Django项目:CMDB(服务器硬件资产自动采集系统)--02--02CMDB将服务器基本信息提交到API接口
AutoCmdb # urls.py """AutoCmdb URL Configuration The `urlpatterns` list routes URLs t ...
- skyline(TG,arcgis server)BS系统部署
skyline的BS系统部署,正常情况下应该是TG来统一管理,SFS对矢量数据服务进行管理.但我们一直是试用许可安装的TG,发现SFS要么安装不成功,要么就是不稳定.对于Fly工程可以通过Publis ...
- 使用video.js支持flv格式
html5的video标签只支持mp4.webm.ogg三种格式,不支持flv格式,在使用video.js时,如果使用html5是会报错不支持. 修改了一下代码 js部分 videojs.option ...
- css3之属性选择器
总体来看一下都有哪些选择器 1.属性选择器 1)[att*=val] 2)[att^=val] 3)[att$=val] 2.结构伪类选择器 3.UI伪类选择器 其中E:read-only伪类选择器 ...
- Vuejs实战项目五:数据列表
1.在EasyMock 中添加数据列表模拟接口 请求url:/suyuan/list 请求方式:get 描述:数据列表 mock.js配置: 例: { "code": 2000, ...
- Redis源码解析:11RDB持久化
Redis的RDB持久化的相关功能主要是在src/rdb.c中实现的.RDB文件是具有一定编码格式的数据文件,因此src/rdb.c中大部分代码都是处理数据格式的问题. 一:RDB文件格式 上图就是一 ...
- 针对老式浏览器(主要是IE6、7、8)的css3-mediaqueries.js自适应布局
<meta name="viewport" content="width=device-width, initial-scale=1" /> vie ...
- AT2164 Rabbit Exercise
传送门 解题思路 首先考虑k=1的情况,对于每一个a[i],它可能会到a[i-1]*2-a[i] 与 a[i+1]*2-a[i]两个位置,概率都为%50,那么它的期望位置为 (a[i-1]*2-a[i ...
- LintCode 合并两个排序
将两个排序链表合并为一个新的排序链表 样例 给出 1->3->8->11->15->null,2->null, 返回1->2->3->8-> ...