BZOJ #2506. calc [根号分治,莫队,二分]
\(p\) 是个正常范围, \(\sqrt p <= 100\) 比较小,预处理出来 \(a_i % p == k\) 的位置,然后丢进去,最后询问的 \(p\) 如果大于 \(100\) 就莫队搞,否则直接二分。
// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
using namespace std;
using db = double;
using ll = long long;
using uint = unsigned int;
#define int long long
using pii = pair<int, int>;
#define ve vector
#define Tp template
#define all(v) v.begin(), v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second
// the cmin && cmax
Tp<class T> void cmax(T& x, const T& y) {
if (x < y) x = y;
}
Tp<class T> void cmin(T& x, const T& y) {
if (x > y) x = y;
}
// sort , unique , reverse
Tp<class T> void sort(ve<T>& v) { sort(all(v)); }
Tp<class T> void unique(ve<T>& v) {
sort(all(v));
v.erase(unique(all(v)), v.end());
}
Tp<class T> void reverse(ve<T>& v) { reverse(all(v)); }
const int SZ = 0x191981;
struct FILEIN {
~FILEIN() {}
char qwq[SZ], *S = qwq, *T = qwq, ch;
char GETC() { return (S == T) && (T = (S = qwq) + fread(qwq, 1, SZ, stdin), S == T) ? EOF : *S++; }
FILEIN& operator>>(char& c) {
while (isspace(c = GETC()))
;
return *this;
}
FILEIN& operator>>(string& s) {
while (isspace(ch = GETC()))
;
s = ch;
while (!isspace(ch = GETC())) s += ch;
return *this;
}
Tp<class T> void read(T& x) {
bool sign = 1;
while ((ch = GETC()) < 0x30)
if (ch == 0x2d) sign = 0;
x = (ch ^ 0x30);
while ((ch = GETC()) > 0x2f) x = x * 0xa + (ch ^ 0x30);
x = sign ? x : -x;
}
FILEIN& operator>>(int& x) { return read(x), *this; }
FILEIN& operator>>(signed& x) { return read(x), *this; }
FILEIN& operator>>(unsigned& x) { return read(x), *this; }
} in;
struct FILEOUT {
const static int LIMIT = 0x114514;
char quq[SZ], ST[0x114];
signed sz, O;
~FILEOUT() { sz = O = 0; }
void flush() {
fwrite(quq, 1, O, stdout);
fflush(stdout);
O = 0;
}
FILEOUT& operator<<(char c) { return quq[O++] = c, *this; }
FILEOUT& operator<<(string str) {
if (O > LIMIT) flush();
for (char c : str) quq[O++] = c;
return *this;
}
Tp<class T> void write(T x) {
if (O > LIMIT) flush();
if (x < 0) {
quq[O++] = 0x2d;
x = -x;
}
do {
ST[++sz] = x % 0xa ^ 0x30;
x /= 0xa;
} while (x);
while (sz) quq[O++] = ST[sz--];
return;
}
FILEOUT& operator<<(int x) { return write(x), *this; }
FILEOUT& operator<<(signed x) { return write(x), *this; }
FILEOUT& operator<<(unsigned x) { return write(x), *this; }
} out;
int n, q;
vector<int> qwq[101][101];
const int S = 400;
const int maxn = 1e5 + 51;
int a[maxn];
int bl(int x) { return (x - 1) / S + 1; }
int ans[maxn];
signed main() {
#ifdef _WIN64
freopen("testdata.in", "r", stdin);
#endif
// code begin.
in >> n >> q;
rep(i, 1, n) in >> a[i];
rep(i, 1, n) rep(j, 1, 100) qwq[j][a[i] % j].push_back(i);
struct node {
int l, r, p, k, id;
bool operator<(const node& o) const {
if (bl(l) ^ bl(o.l)) return l < o.l;
return r < o.r;
}
};
vector<node> que;
rep(i, 1, q) {
int l, r, p, k;
in >> l >> r >> p >> k;
if (p <= 100)
ans[i] = upper_bound(all(qwq[p][k]), r) - lower_bound(all(qwq[p][k]), l);
else
que.push_back({ l, r, p, k, i });
}
sort(que);
int l = 1, r = 0;
vector<int> cnt(maxn);
for (auto x : que) {
while (l < x.l) --cnt[a[l++]];
while (l > x.l) ++cnt[a[--l]];
while (r < x.r) ++cnt[a[++r]];
while (r > x.r) --cnt[a[r--]];
int res = 0;
for (int ovo = x.k; ovo <= 10000; ovo += x.p) res += cnt[ovo];
ans[x.id] = res;
}
rep(i, 1, q) out << ans[i] << '\n';
return out.flush(), 0;
// code end.
}
BZOJ #2506. calc [根号分治,莫队,二分]的更多相关文章
- 【bzoj2506】calc 根号分治+STL-vector+二分+莫队算法
题目描述 给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值i的个数. 输入 第一行两个正整数n ...
- 【BZOJ2506】calc 分段+vector+莫队
[BZOJ2506]calc Description 给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且A ...
- Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem 题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈
题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. ...
- 【序列莫队+二分答案+树状数组】POJ2104-K-th Number
[题目大意] 给出一个长度为n的序列和m组查询(i,j,k),输出[i,j]中的第k大数. [思路] 先离散化然后莫队分块.用树状数组来维护当前每个值的个数,然后对于每次询问二分答案即可. 又一次实力 ...
- BZOJ 4129 树上带修莫队+线段树
思路: 可以先做做BZOJ3585 是序列上的mex 考虑莫队的转移 如果当前数字出现过 线段树上把它置成1 对于询问 二分ans 线段树上查 0到ans的和 是不是ans+1 本题就是把它搞到了序列 ...
- BZOJ 3236 AHOI 2013 作业 莫队+树状数组
BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
随机推荐
- 【译】Serilog 配置基础知识
Serilog 使用简单的C# API来配置日志记录.当外部配置需要时,可以使用Serilog.Settings.AppSettings包(.NET 框架)或Serilog.Settings.Conf ...
- 3、IP地址划分
划分子网方法:1.你所选择的子网掩码将会产生多少个子网?:2 的x 次方(x 代表被借走的主机位数)2.每个子网能有多少主机?: 2 的y 次方-2(y 代表被借走之后剩余的主机位数)3.块大小:bl ...
- ATL窗口
标准的Windows应用程序框架: /*------------------------------------------------------------ HELLOWIN.C -- Displ ...
- SPH液面重构过程中的问题
使用粒子方法进行流体特效模拟需要进行液面重构,构造出流体的自由表面,液面重构方法也是一个独立的研究方向,针对其的研究已经有了很多成果,包括液面的平滑度.精度和并行效率等. 在这里,主要是记录一下我在液 ...
- Jmeter之下载文件
前言 我们可以利用postman工具来测试下载文件的接口,那么假如要利用Jmeter工具来进行下载接口的测试,又该如何测试呢? 下载文件的接口地址:/pinter/file/api/download? ...
- 动手学习Pytorch(4)--过拟合欠拟合及其解决方案
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差 ...
- 20191228--python学习第四天
今日内容: 列表 元组 内容回顾与补充 1.计算机基础 硬件:CPU/内存/硬盘/主板/网卡 操作系统:linux(免费/开源) centos/ubuntu/redhat windows ma ...
- RFC笔记—IP Version 6 Addressing Architecture
IP Version 6 Addressing Architecture,RFC4291 It includes the basic formats for the various types of ...
- 神奇的 SQL 之 WHERE 条件的提取与应用
开心一刻 小明:为什么中国人结婚非要选一个好日子呢 ? 楼主:嗯 ? 那肯定啊,结完婚之后你还能有好日子吗 ? 小明:那结婚时所说的白头到老是真的吗 ? 楼主:这哪能是真的,你看现在,头发还没白就秃了 ...
- 学习CSS之如何改变CSS伪元素的样式
一.CSS伪元素 CSS 伪元素用于向某些选择器设置特殊效果. 伪元素的用法如下: selector:pseudo-element {property:value;} CSS 类也可以和伪元素搭配使用 ...