1. Poll Messages

在Kafka Consumer 中消费messages时,使用的是poll模型,也就是主动去Kafka端取数据。其他消息管道也有的是push模型,也就是服务端向consumer推送数据,consumer仅需等待即可。

Kafka Consumer的poll模型使得consumer可以控制从log的指定offset去消费数据、消费数据的速度、以及replay events的能力。

Kafka Consumer 的poll模型工作如下图:

  • ·       Consumer 调用.poll(Duration timeout) 方法,向broker请求数据
  • ·       若是broker端有数据则立即返回;否则在timeout时间后返回empty

我们可以通过参数控制 Kafka Consumer 行为,主要有:

  • ·       Fetch.min.bytes(默认值是1)

o   控制在每个请求中,至少拉取多少数据

o   增加此参数可以提高吞吐并降低请求的数目,但是代价是增加延时

  • ·       Max.poll.records(默认是500)

o   控制在每个请求中,接收多少条records

o   如果消息普遍都比较小而consumer端又有较大的内存,则可以考虑增大此参数

o   最好是监控在每个请求中poll了多少条消息

  • ·       Max.partitions.fetch.bytes(默认为1MB)

o   Broker中每个partition可返回的最多字节

o   如果目标端有100多个partitions,则需要较多内存

  • ·       Fetch.max.bytes(默认50MB)

o   对每个fetch 请求,可以返回的最大数据量(一个fetch请求可以覆盖多个partitions)

o   Consumer并行执行多个fetch操作

默认情况下,一般不建议手动调整以上参数,除非我们的consumer已经达到了默认配置下的最高的吞吐,且需要达到更高的吞吐。

2. Consumer Offset Commit 策略

在一个consumer 应用中,有两种常见的committing offsets的策略,分别为:

  • ·       (较为简单)enable.auto.commit = true:自动commit offsets,但必须使用同步的方式处理数据
  • ·       (进阶)enable.auto.commit = false:手动commit offsets

在设置enable.auto.commit = true时,考虑以下代码:

while(true) {
List<Records> batch = consumer.poll(Duration.ofMillis(100));
doSomethingSynchronous(batch);
}

一个Consumer 每隔100ms poll一次消息,然后以同步地方式处理这个batch的数据。此时offsets 会定期自动被commit,此定期时间由 auto.commit.interval.ms 决定,默认为 5000,也就是在每次调用 .poll() 方法 5 秒后,会自动commit offsets。

但是如果在处理数据时用的是异步的方式,则会导致“at-most-once”的行为。因为offsets可能会在数据被处理前就被commit。

所以对于新手来说,使用 enable.auto.commit = true 可能是有风险的,所以不建议一开始就使用这种方式 。

若设置 enable.auto.commit = false,考虑以下代码:

while(true) {
List<Records> batch = consumer.poll(Duration.ofMillis(100));
if isReady(batch){
doSomethingSynchronous(batch);
consumer.commitSync();
}
}

  

此例子明确指示了在同步地处理了数据后,再主动commit offsets。这样我们可以控制在什么条件下,去commit offsets。一个比较典型的场景为:将接收的数据读入缓存,然后flush 缓存到一个数据库中,最后再commit offsets。

3. 手动Commit Offset 示例

首先我们关闭自动commit offsets :

// disable auto commit of offsets
properties.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); 指定每个请求最多接收10条records,便于测试:
properties.setProperty(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "10"); 

添加以下代码逻辑:

public static void main(String[] args) throws IOException {
Logger logger = LoggerFactory.getLogger(ElasticSearchConsumer.class.getName());
RestHighLevelClient client = createClient(); // create Kafka consumer
KafkaConsumer<String, String> consumer = createConsumer("kafka_demo"); // poll for new data
while(true){
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMinutes(100)); logger.info("received " + records.count() + "records");
for(ConsumerRecord record : records) { // construct a kafka generic ID
String kafka_generic_id = record.topic() + "_" + record.partition() + "_" + record.offset(); // where we insert data into ElasticSearch
IndexRequest indexRequest = new IndexRequest(
"kafkademo"
).id(kafka_generic_id).source(record.value(), XContentType.JSON); IndexResponse indexResponse = client.index(indexRequest, RequestOptions.DEFAULT);
String id = indexResponse.getId(); logger.info(id); try {
Thread.sleep(10); // introduce a small delay
} catch (InterruptedException e) {
e.printStackTrace();
}
} logger.info("Committing offsets...");
consumer.commitSync(); // commit offsets manually
logger.info("Offsets have been committed"); }
}

这里我们在处理每次获取的10条records后(也就是for 循环完整执行一次),手动执行一次offsets commit。打印日志记录为:

手动停止consumer 程序后,可以看到最后的committed offsets为165:

使用consumer-group cli 也可以验证当前committed offsets为165:

4. Performance Improvement using Batching

在这个例子中,consumer 限制每次poll 10条数据,然后每条依次处理(插入elastic search)。此方法效率较低,我们可以通过使用 batching 的方式增加吞吐。这里实现的方式是使用 elastic search API 提供的BulkRequest,基于之前的代码,修改如下:

public static void main(String[] args) throws IOException {
Logger logger = LoggerFactory.getLogger(ElasticSearchConsumer.class.getName());
RestHighLevelClient client = createClient(); // create Kafka consumer
KafkaConsumer<String, String> consumer = createConsumer("kafka_demo"); // poll for new data
while(true){
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMinutes(100)); // bulk request
BulkRequest bulkRequest = new BulkRequest(); logger.info("received " + records.count() + "records");
for(ConsumerRecord record : records) { // construct a kafka generic ID
String kafka_generic_id = record.topic() + "_" + record.partition() + "_" + record.offset(); // where we insert data into ElasticSearch
IndexRequest indexRequest = new IndexRequest(
"kafkademo"
).id(kafka_generic_id).source(record.value(), XContentType.JSON); IndexResponse indexResponse = client.index(indexRequest, RequestOptions.DEFAULT); // add to our bulk request (takes no time)
bulkRequest.add(indexRequest); //String id = indexResponse.getId();
//logger.info(id); try {
Thread.sleep(10); // introduce a small delay
} catch (InterruptedException e) {
e.printStackTrace();
}
} // bulk response
BulkResponse bulkItemResponses = client.bulk(bulkRequest, RequestOptions.DEFAULT); logger.info("Committing offsets...");
consumer.commitSync(); // commit offsets manually
logger.info("Offsets have been committed"); }
}

  

可以看到,consumer在poll到记录后,并不会一条条的向elastic search 发送,而是将它们放入一个BulkRequest,并在for循环结束后发送。在发送完毕后,再手动commit offsets。

执行结果为:

Apache Kafka(九)- Kafka Consumer 消费行为的更多相关文章

  1. 11:57:24 [org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1] WARN o.apache.kafka.clients.NetworkClient - [Consumer clientId=consumer-2, groupId=jiatian_api] 3 partitions have leader……

    错误如下: 11:57:24 [org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1] WARN  o.apache.kaf ...

  2. 分布式系列九: kafka

    分布式系列九: kafka概念 官网上的介绍是kafka是apache的一种分布式流处理平台. 最初由Linkedin开发, 使用Scala编写. 具有高性能,高吞吐量的特定. 包含三个关键能力: 发 ...

  3. Apache ZooKeeper在Kafka中的角色 - 监控和配置

    1.目标 今天,我们将看到Zookeeper在Kafka中的角色.本文包含Kafka中需要ZooKeeper的原因.我们可以说,ZooKeeper是Apache Kafka不可分割的一部分.在了解Zo ...

  4. Kafka 0.8 Consumer设计解析

    摘要 本文主要介绍了Kafka High Level Consumer,Consumer Group,Consumer Rebalance,Low Level Consumer实现的语义,以及适用场景 ...

  5. Kafka设计解析(十三)Kafka消费组(consumer group)

    转载自 huxihx,原文链接 Kafka消费组(consumer group) 一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka ...

  6. Kafka 0.8 Consumer处理逻辑

    0.前言 客户端用法: kafka.javaapi.consumer.ConsumerConnector consumer = kafka.consumer.Consumer.createJavaCo ...

  7. Apache Kafka安全| Kafka的需求和组成部分

    1.目标 - 卡夫卡安全 今天,在这个Kafka教程中,我们将看到Apache Kafka Security 的概念  .Kafka Security教程包括我们需要安全性的原因,详细介绍加密.有了这 ...

  8. Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)

    这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...

  9. 【Kafka】Kafka简单介绍

    目录 基本介绍 概述 优点 主要应用场景 Kafka的架构 四大核心API 架构内部细节 基本介绍 概述 Kafka官网网站:http://kafka.apache.org/ Kafka是由Apach ...

  10. kafka实战教程(python操作kafka),kafka配置文件详解

    kafka实战教程(python操作kafka),kafka配置文件详解 应用往Kafka写数据的原因有很多:用户行为分析.日志存储.异步通信等.多样化的使用场景带来了多样化的需求:消息是否能丢失?是 ...

随机推荐

  1. CF895C Square Subsets [线性基]

    线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...

  2. 二分类模型之logistic

    liner classifiers 逻辑回归用在2分类问题上居多.它是一个非线性的回归模型,其最大的好处恰恰是可以解决二元类问题,目前在金融行业,基本都是使用Logistic回归来预判一个用户是否为好 ...

  3. claim、claimsidentity、claimsprincipal

    Claim表示一个声明单元,它用来组成ClaimsIdentity.ClaimsIdentity表示一个证件,例如身份证,身份证上面的名字表示一个Claim,身份证号也表示一个Claim,所有这些Cl ...

  4. Python函数装饰器

    装饰器的原则 1)不修改被修饰函数的源代码: 2)不修改被修饰函数的调用方式: 装饰器的知识点 = 高阶函数 + 函数嵌套 + 闭包 1. 只用高阶函数写装饰器--->有瑕疵 import ti ...

  5. python爬虫----爬取阿里数据银行websocket接口

    业务需求:爬取阿里品牌数据银行的自定义模块==>>>人群透视==>>>查看报告==>>数据 发现:数据通过websocket接口传递,此类型接口的详细理 ...

  6. Ubuntu 18.04安装配置Apache Ant

    Ubuntu 18.04安装配置Apache Ant 文章目录 Ubuntu 18.04安装配置Apache Ant 下载 执行以下命令 `/etc/profile`中配置环境变量 载入配置 测试 执 ...

  7. python接口自动化之pytest环境准备与入门(五)

    安装的pytest版本应该与安装的python版本对应,不然会有问题 (我的环境是python3.6与pytest4.5.0) 1.安装pytest pip install pytest==4.5.0 ...

  8. IntelliJ IDEA实用插件推荐

    IntelliJ在业界被公认为优秀的Java开发平台之一,在智能代码助手.代码自动提示.重构.J2EE支持.代码审查. 创新的GUI设计等方面表现突出,并支持基于Android平台的程序开发.通过插件 ...

  9. [ZJOI2008] 生日聚会 - dp

    共有\(n\)个男孩与\(m\)个女孩打算坐成一排.对于任意连续的一段,男孩与女孩的数目之差不超过 \(k\).求方案数. \(n,m \leq 150, k \leq 20\) Solution 设 ...

  10. web前端技术阅读

    2015年 <响应式web设计>--响应式布局,渐进增强,优雅降级 <javascript高级程序设计>--js基础 2016年 <javascript语言精粹>- ...