TopCoder[SRM587 DIV 1]:TriangleXor(550)
Problem Statement |
|||||||||||||
|
You are given an int W. There is a rectangle in the XY-plane with corners at (0, 0), (0, 1), (W, 0), and (W, 1). Let T[x] be the triangle with vertices at (0, 1), (W, 1) and (x, 0). (All points that lie inside the triangle are a part of T[x] as well.) The objective in this problem is to calculate the area of the region (T[0] xor T[1] xor ... xor T[W]). (See Notes for a formal definition.) The figures below show the region (T[0] xor T[1] xor ... xor T[W]) for W=1,2,3,4,5,6.
Return the integer part of the area of the region. |
|||||||||||||
Definition |
|||||||||||||
|
|||||||||||||
Limits |
|||||||||||||
|
|||||||||||||
Notes |
|||||||||||||
| - | For sets of points A and B in the XY-plane, the set (A xor B) is defined as the set of all points that lie in exactly one of the sets A and B (i.e., points that belong to the union of A and B but don't belong to their intersection). | ||||||||||||
| - | If the exact area is A, the correct return value is floor(A), not round(A). In words: you should return the largest integer that is less than or equal to the exact area. | ||||||||||||
| - | The format of the return value was chosen to help you in case of small precision errors. The constraints guarantee that computing the correct area with absolute error less than 0.01 is sufficient to determine the correct return value. The author's solution is significantly more precise than that. | ||||||||||||
Constraints |
|||||||||||||
| - | W will be between 1 and 70,000, inclusive. | ||||||||||||
| - | The difference between the exact area of the region and the nearest integer will be greater than 0.01. | ||||||||||||
Examples |
|||||||||||||
| 0) | |||||||||||||
|
|||||||||||||
| 1) | |||||||||||||
|
|||||||||||||
| 2) | |||||||||||||
|
|||||||||||||
| 3) | |||||||||||||
|
|||||||||||||
| 4) | |||||||||||||
|
|||||||||||||
| 5) | |||||||||||||
|
|||||||||||||
题意:给你一个1*n的矩形,按图中方法划线、涂色,问多大面积涂为黄色。
题解:
根据题目中的图,可以用两条对角线把涂色区域分为四个部分。
对于上方部分,若n为偶数,全为黄色;若为奇数,全为黑色。
对于左右部分,通过三角形的相似求出各个等高三角形的底之和与对角线长度的比例,计算面积。
对于下方部分,同样通过相似求出各组等高四边形的底之和与高,计算面积。
代码:
class JumpFurther
{
public:
int furthest(int N, int badStep)
{
//$CARETPOSITION$
int tot=,x=;
for(int i=;i<=N;i++)
{
tot=tot+i; if(tot==badStep)x--;
}
return tot+x;
}
};
TopCoder[SRM587 DIV 1]:TriangleXor(550)的更多相关文章
- TopCoder[SRM587 DIV 1]:ThreeColorability(900)
Problem Statement There is a H times W rectangle divided into unit cells. The rows of cells are ...
- TopCoder[SRM513 DIV 1]:Reflections(1000)
Problem Statement Manao is playing a new game called Reflections. The goal of the game is trans ...
- Topcoder SRM584 DIV 2 500
#include <set> #include <iostream> #include <string> #include <vector> using ...
- Topcoder SRM583 DIV 2 250
#include <string> #include <iostream> using namespace std; class SwappingDigits { public ...
- 【补解体报告】topcoder 634 DIV 2
A:应该是道语文题,注意边界就好: B:开始考虑的太复杂,没能够完全提取题目的思维. 但还是A了!我愚蠢的做法:二分答案加暴力枚举, 枚举的时候是完全模拟的,比如每次取得时候都是从大到小的去取,最后统 ...
- Topcoder Srm627 DIV 2
A,B:很水,注意边界,话说HACK都是这些原因. C: R[I][J]:表示反转I-J能改变冒泡排序的次数: DP方程:dp[i][k]=max(dp[j][k],dp[j][k-1]+dp[j][ ...
- Topcoder SRM548 Div 1
1. KingdomAndTrees 给出n个数a[1..n],求一个数组b[1..n]满足b严格递增,且b[1]>=1. 定义代价为W = max{abs(a[i]-b[i])},求代价最小值 ...
- TopCoder[SRM513 DIV 1]:PerfectMemory(500)
Problem Statement You might have played the game called Memoria. In this game, there is a board ...
- [topcoder]BinaryCards
现在觉得有空时可以刷一下topcoder的DIV 2的Lvl 3的题目.感觉和刷LeetCode和WikiOi都是不一样的. http://community.topcoder.com/stat?c= ...
随机推荐
- Qt:代码里存在中文时带来的问题
一.报错: 常量中有换行符 方法1: 把文本文件转化为unicode或者utf-8, 同是还要带上QString::fromLocal8Bit() 还有其他方法,感觉不靠谱 二.显示异常:乱码 QSt ...
- java -jar 设置日志位置
使用 java -jar形式启动,设定日志的位置 语法如下: java -jar xxx.jar > xxx.log References java -jar 设置日志位置
- kubeadm部署k8s集群
kubeadm是官方社区推出的一个用于快速部署kubernetes集群的工具. 这个工具能通过两条指令完成一个kubernetes集群的部署: # 创建一个 Master 节点 kubeadm ini ...
- zabbix 发送邮件到企业微信
#!/usr/bin/python2.7#_*_coding:utf-8 _*_#auther:拿来用用import requests,sys,jsonimport urllib3urllib3.di ...
- react-router v3和v4区别
1.默认路由 v3 <IndexRoute> v4 <Route exact> 2.授权路由 import Redirect from 'react-router-dom' & ...
- 深入理解Magento - 第一章 - Magento强大的配置系统
深入理解Magento 作者:Alan Storm翻译:zhlmmc 前言第一章 - Magento强大的配置系统第二章 - Magento请求分发与控制器第三章 - 布局,块和模板第四章 - 模型和 ...
- 使用用Intellij Idea从Github上获取代码
1.打开File菜单,选择Setting,在Version Control下找到Github. 2.分别在Login与Password中输入自己在Github注册的用户名和密码,然后点击Test按钮: ...
- Yii2数据库操作 事务
Yii2 DAO http://blog.csdn.net/hzqghost/article/details/44116039
- 解决$.ajax请求在ie8下失效问题
ie8下默认把跨域请求拦截了,需要用jquery.xdomainrequest.min.js 处理跨域问题,需放在jq下引入 http://cdnjs.cloudflare.com/ajax/libs ...
- php编译安装phalcon框架 - centos
使用官方的文档安装方式会报错,进行了一些实验,终于安装成功! 安装phalcon前提是需要安装php的pdo,如果使用mysql 需要安装 pdo_mysql 先看下git的版本号git --vers ...



