传送门:hdu 5800 To My Girlfriend

题意:给定n个物品,其中i,j必选,l,m必不选,问组成体积为s的方法一共有多少种

思路:定义dp[i][j][s1][s2],表示前i种物品能够构成的体积为j,其中有s1种定为必选,s2种定为不必选;因为递推到第i层时,只与第i-1层有关,所以把第一维降到2来省内存。然后就是dp[i][j][s1][s2]=dp[i-1][j][s1][s2]+dp[i-1][j][s1][s2-1]+dp[i-1][j-a[i]][s1-1][s2]+dp[i-1][j-a[i]][s1][s2];然后就是对i,j,l,m排序了,A(2,2)*A(2,2)

/**************************************************************
Problem:hdu 5800 To My Girlfriend
User: youmi
Language: C++
Result: Accepted
Time:1903MS
Memory:1716K
****************************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <cmath>
#include <queue>
#include <deque>
#include <string>
#include <vector>
#define zeros(a) memset(a,0,sizeof(a))
#define ones(a) memset(a,-1,sizeof(a))
#define sc(a) scanf("%d",&a)
#define sc2(a,b) scanf("%d%d",&a,&b)
#define sc3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define sclld(a) scanf("%I64d",&a)
#define pt(a) printf("%d\n",a)
#define ptlld(a) printf("%I64d\n",a)
#define rep(i,from,to) for(int i=from;i<=to;i++)
#define irep(i,to,from) for(int i=to;i>=from;i--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define lson (step<<1)
#define rson (lson+1)
#define eps 1e-6
#define oo 0x3fffffff
#define TEST cout<<"*************************"<<endl
const double pi=*atan(1.0); using namespace std;
typedef long long ll;
template <class T> inline void read(T &n)
{
char c; int flag = ;
for (c = getchar(); !(c >= '' && c <= '' || c == '-'); c = getchar()); if (c == '-') flag = -, n = ; else n = c - '';
for (c = getchar(); c >= '' && c <= ''; c = getchar()) n = n * + c - ''; n *= flag;
}
int Pow(int base, ll n, int mo)
{
if (n == ) return ;
if (n == ) return base % mo;
int tmp = Pow(base, n >> , mo);
tmp = (ll)tmp * tmp % mo;
if (n & ) tmp = (ll)tmp * base % mo;
return tmp;
}
//***************************
int n,s;
const int maxn=+;
const ll mod=;
ll dp[][maxn][][];
int a[maxn];
ll ans; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int T_T;
scanf("%d",&T_T);
for(int kase=;kase<=T_T;kase++)
{
sc2(n,s);
rep(i,,n)
sc(a[i]);
zeros(dp);
ll ans=;
dp[][][][]=;
int temp=;
rep(i,,n)
{
zeros(dp[temp]);
rep(j,,s)
rep(s1,,)
rep(s2,,)
{
dp[temp&][j][s1][s2]=(dp[temp&][j][s1][s2]+dp[temp^][j][s1][s2])%mod;
if(s2>=)
dp[temp&][j][s1][s2]=(dp[temp&][j][s1][s2]+dp[temp^][j][s1][s2-])%mod;
if(s1>=&&j>=a[i])
dp[temp&][j][s1][s2]=(dp[temp&][j][s1][s2]+dp[temp^][j-a[i]][s1-][s2])%mod;
if(j>=a[i])
dp[temp&][j][s1][s2]=(dp[temp&][j][s1][s2]+dp[temp^][j-a[i]][s1][s2])%mod;
}
temp^=;
}
temp^=;
rep(j,,s)
ans=(ans+dp[temp][j][][])%mod;
ans=(ans*)%mod;
ptlld(ans);
}
}

hdu 5800 To My Girlfriend + dp的更多相关文章

  1. HDU 5800 To My Girlfriend 背包

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5800 To My Girlfriend Time Limit: 2000/2000 MS (Java ...

  2. HDU 5800 To My Girlfriend(单调DP)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=5800 [题目大意] 给出一个容量上限s,f[i][j][k][l][m]表示k和l两个物品不能选,i ...

  3. hdu 5800 To My Girlfriend(背包变形)

    To My Girlfriend Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. HDU 5800 To My Girlfriend

    背包变形.dp[i][j][g][h]表示前i个数字,和为j,有g个必选,有h个必不选的方案数. 答案为sum{dp[n][j][2][2]}*4 #pragma comment(linker, &q ...

  5. HDU 5800 (DP)

    Problem To My Girlfriend (HDU 5800) 题目大意 给定一个由n个元素组成的序列,和s (n<=1000,s<=1000) 求 :   f (i,j,k,l, ...

  6. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  7. hdu 5094 Maze 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...

  8. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  9. hdu 4568 Hunter 最短路+dp

    Hunter Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

随机推荐

  1. 【NOIP训练】【规律+数论】欧拉函数的应用

    Problem 1 [题目大意] 给出 多组数据 ,给出  求出 . 题解 证明:  除了 以为均为偶数, 所以互质的个数成对. 由 得 . 所以对于每对的和为 , 共有 对 . 则 Problem ...

  2. maven工程导入时解决Cannot change version of project facet Dynamic Web Module to 2.3

    解决方法:修改web.xml,在头部加入内容,加入后为: <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance&q ...

  3. C语言范例学习01

    编程语言的能力追求T型. 以前学过C语言,但是只学了理论. 从今天开始,我买了本<C语言程序开发范例宝典>.我要把它通关掉. 这应该可以极大地提升我的编程能力. 第一章 基础知识 这章没太 ...

  4. hibernate4整合spring3事务问题

    本文是作者在对hibernate4+spring3+struts2整合中遇到的一个问题.对s2sh进行了基本的整合搭建以后,就是对事务的控制管理,将hibernate的事务交由spring管理.根据网 ...

  5. ArcGIS10.2下调试10.1的程序

    听说:10.2比10.1好,诚然,安装了10.2打开一看是这样的,以为是下载的版本问题,后来才以现是显示设置的问题. 因为,我使用的两个显示器,屏幕有点大,所以,就改成中等了,不然怎么可截取下面的截图 ...

  6. SharePoint 2013 列表多表联合查询

    在SharePoint的企业应用中,遇到复杂的逻辑的时候,我们会需要多表查询:SharePoint和Sql数据表一样,也支持多表联合查询,但是不像Sql语句那样简单,需要使用SPQuery的Joins ...

  7. SharePoint 2013 排错之"Code blocks are not allowed in this file"

    今天,设置页面布局的自定义母版页时,设置完了以后保存,然后预览报错,错误如下截图:删掉自定义母版页的MasterPageFile属性,页面依然报错:感觉甚是奇怪,因为有版本控制,还原为最初的版本,依然 ...

  8. [leetcode] Contains Duplicate II

    Contains Duplicate II Given an array of integers and an integer k, find out whether there there are ...

  9. Jenkins部署.net自动化构建

    1.环境部署: windows server 2008R2环境   2.相关软件 SVN(源代码管理器:jenkins通过插件从源代码管理器下载代码)   Jenkins(主角)地址:http://f ...

  10. IOS 瀑布流UICollectionView实现

    IOS 瀑布流UICollectionView实现 在实现瀑布流之前先来看看瀑布流的雏形(此方法的雏形 UICollectionView) 对于UICollectionView我们有几点注意事项 它和 ...