Lintcode: Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjcent integers are not greater than a given number target. If the array before adjustment is A, the array after adjustment is B, you should minimize the sum of |A[i]-B[i]| Note
You can assume each number in the array is a positive integer and not greater than 100 Example
Given [1,4,2,3] and target=1, one of the solutions is [2,3,2,3], the adjustment cost is 2 and it's minimal. Return 2.
这道题要看出是背包问题,不容易,跟FB一面paint house很像,比那个难一点
定义res[i][j] 表示前 i个number with 最后一个number是j,这样的minimum adjusting cost
如果第i-1个数是j, 那么第i-2个数只能在[lowerRange, UpperRange]之间,lowerRange=Math.max(0, j-target), upperRange=Math.min(99, j+target),
这样的话,transfer function可以写成:
for (int p=lowerRange; p<= upperRange; p++) {
res[i][j] = Math.min(res[i][j], res[i-1][p] + Math.abs(j-A.get(i-1)));
}
public class Solution {
/**
* @param A: An integer array.
* @param target: An integer.
*/
public int MinAdjustmentCost(ArrayList<Integer> A, int target) {
// write your code here
int[][] res = new int[A.size()+1][100];
for (int j=0; j<=99; j++) {
res[0][j] = 0;
}
for (int i=1; i<=A.size(); i++) {
for (int j=0; j<=99; j++) {
res[i][j] = Integer.MAX_VALUE;
int lowerRange = Math.max(0, j-target);
int upperRange = Math.min(99, j+target);
for (int p=lowerRange; p<=upperRange; p++) {
res[i][j] = Math.min(res[i][j], res[i-1][p]+Math.abs(j-A.get(i-1)));
}
}
}
int result = Integer.MAX_VALUE;
for (int j=0; j<=99; j++) {
result = Math.min(result, res[A.size()][j]);
}
return result;
}
}
Lintcode: Minimum Adjustment Cost的更多相关文章
- Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjacent integers are n ...
- HDU 1385 Minimum Transport Cost (Dijstra 最短路)
Minimum Transport Cost http://acm.hdu.edu.cn/showproblem.php?pid=1385 Problem Description These are ...
- Minimum Transport Cost(floyd+二维数组记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- HDU1385 Minimum Transport Cost (Floyd)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost (Floyd)
Minimum Transport CostTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- NSOJ Minimum Transport Cost
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
- ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)
题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...
- Lintcode: Minimum Subarray 解题报告
Minimum Subarray 原题链接: http://lintcode.com/zh-cn/problem/minimum-subarray/# Given an array of intege ...
随机推荐
- javaWeb中struts开发——Logic标签
1.Struts标签的logic标签 Logic标签是逻辑标签,是Struts中比较重要的标签,完成各种逻辑运算操作,可以直接支持全局调转. 2.1<logic:present><l ...
- Checklist For Choosing The Right Database Engine
http://sqlite.org/whentouse.html Appropriate Uses For SQLite SQLite is not directly comparable to cl ...
- JS中基本window.document对象操作以及常用事件!
一.找到元素 1.document.getELementById("id"):根据id找,最多找一个. var a=document.getELementById("id ...
- 关于C语言读取多行数据的问题
我有如下数据格式3360 2001 5 1750.5 1246.5 22.5 n 1775=1177-1316:13360 2001 5 1750.5 1 ...
- Spring IoC反转控制的快速入门
* 下载Spring最新开发包 * 复制Spring开发jar包到工程 * 理解IoC反转控制和DI依赖注入 * 编写Spring核心配置文件 * 在程序中读取Spring配置文件,通过Spring框 ...
- 数据传输:JSON,XML
一.调用Ajax需要的JSON数据 1.url 处理页面 2.data 传递数据 3.datatype返回数据类型 4.type 提交数据方式 5.success成功之后 ...
- MVC3下的layout页面
1.Layout页基础:如果你有使用MasterPage的经验,你将会记得如下的几个东西 A:<%@ Master %> B:<%@ Page %> C:<asp:Con ...
- Apache的HBase与cdh的sqoop集成(不建议不同版本之间的集成)
1.修改sqoop的配资文件 2.从mysql导入到hbase(import) bin/sqoop import \ --connect jdbc:mysql://linux-hadoop3.ibei ...
- C#中string.Empty ,"" , null 区别
引言 String类型作为使用最频繁的类型之一,相信大家都非常熟悉,对于string赋予空值,通常有以下三种方式: String str1=null; String str2=””; String s ...
- RTSP交互命令简介及过程参数描述
目录 [hide] 1 RTSP消息格式 2 简单的rtsp交互过程 3 rtsp中常用方法 3.1 OPTION 3.2 DESCRIBE 3.3 SETUP 3.4 PLAY 3.5 PAUSE ...