paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)
1. 早期C. Koch与S. Ullman的研究工作.
他们提出了非常有影响力的生物启发模型。
C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985.
C. Koch and T. Poggio. Predicting the Visual World: Silence is Golden. Nature Neuroscience, 2(1):9–10, 1999.
C.Koch是加州理工大学Koch Lab的教授,后文的侯晓迪师从C. Koch进行博士研究。
2. 南加州大学iLab实验室Itti教授及其学生Siagian等的研究工作.
见http://ilab.usc.edu/publications/. 主页提供iLab Neuromorphic Vision C++ Toolkit。Christian Siagian博士期间的主要工作是生物学启发的机器人视觉定位研究(Biologically Inspired Mobile Robot Vision Localization).
L. Itti, C. Koch, & E. Niebur .A model of saliency based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254-1259, 1998.
L. Itti and C. Koch. Computational Modelling of Visual Attention. Nature Reviews Neuroscience, 2(3):194–203, 2001.
L. Itti, & P. Baldi . Bayesian surprise attracts human attention. Advances in Neural Information Processing Systems, 19:547-554, 2005.
C. Siagian, L. Itti, Comparison of gist models in rapid scene categorization tasks, In: Proc. Vision Science Society Annual Meeting (VSS08), May 2008.
3. Caltech 的J. Harel研究工作.
Koch Lab的J. Harel在2006年提出基于图的视觉显著性检测. 有Matlab实现。http://www.klab.caltech.edu/~harel/share/gbvs/
J. Harel, C. Koch, &P. Perona. Graph-based visual saliency. Advances in Neural Information Processing Systems, 19:545-552, 2006.
4. Caltech 侯晓迪博士的研究工作.
他是上交硕士,后去加州理工大学读博。他提出的频域残差法(Spectral Residual)让人认识到数学的美。
X,Hou &L,Zhang. Saliency Detection: A spectral residual approach. IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp.1-8.
Xiaodi Hou, Jonathan Harel and Christof Koch: Image Signature: Highlighting Sparse Salient Regions (PAMI 2012)
同时推荐他出演的电影“The PHD Movie”:
http://movie.douban.com/subject/6855109/comments
这里有一个很好的JOKE:
http://bbs.sjtu.edu.cn/bbstcon,board,AI,reid,1203564832.html
5. 复旦大学Chenlei Guo, Liming Zhang的工作.
他们在频域残差法(Spectral Residual)的基础上提出相位谱(Phase Spectrum)方法。
Chenlei Guo, Qi Ma, Liming Zhang: Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform. CVPR 2008
Chenlei Guo, Liming Zhang: A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Transactions on Image Processing 19(1): 185-198 (2010)
6. 瑞士洛桑联邦理工学院EPFL的R. Achanta研究工作.
R. Achanta, F. Estrada, P. Wils, & S. Süsstrunk, Salient region detection and segmentation. International Conference on Computer Vision Systems, 2008, pp.66-75.
R. Achanta and S. Süsstrunk, “Saliency Detection for Content-aware Image Resizing,” in IEEE International Conference on
Image Processing, 2009.
R. Achanta, S. Hemami ,F. Estrada,& S. Süsstrunk, Frequency-tuned salient region detection. IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp.1597-1604.
R. Achanta and S. Süsstrunk, Saliency Detection using Maximum Symmetric Surround, ICIP, 2010.
7. 西安交通大学TieLiu在微软亚研院的一些工作.
Tie Liu, Jian Sun, Nan-Ning Zheng, Xiaoou Tang and Heung-Yeung Shum. Learning to Detect A Salient Object. In Proc. IEEE Cont. on Computer Vision and pattern Recognition (CVPR), 2007.
Tie Liu, et. al. ,Video Attention: Learning to Detect A Salient Object Sequence, ICPR 2008.
8. 瑞典KIT的Boris Schauerte的研究工作.
B. Schauerte, R. Stiefelhagen, "Predicting Human Gaze using Quaternion DCT Image Signature Saliency and Face Detection". In Proc. 12th IEEE Workshop on the Applications of Computer Vision (WACV), 2012. (Best Student Paper Award)
B. Schauerte, R. Stiefelhagen, "Quaternion-based Spectral Saliency Detection for Eye Fixation Prediction". In Proc. 12th European Conference on Computer Vision (ECCV), 2012.
9. 以色列理工大学(The Technion),CGM Lab,L. Zelnik-Manor研究组的工作.
D. Rudoy, D.B Goldman, E. Shechtman and L.Zelnik-Manor, " Learning video saliency from human gaze using candidate selection ", To appear in CVPR, 2013.
R. Margolin, A. Tal, and L. Zelnik-Manor, " What Makes a Patch Distinct? ", To appear in CVPR, 2013.
R. Margolin, L. Zelnik-Manor, and A. Tal " SaliencyFor ImageManipulation ", The Visual Computer, June 2012.
R.Margolin, L. Zelnik-Manor, and A. Tal " SaliencyFor ImageManipulation ", Computer Graphics International (CGI) 2012.
S. Goferman, L. Zelnik-Manor, and A. Tal " Context-AwareSaliency Detection ", IEEE Trans. on Pattern Analysis and Machine Intelligence(PAMI), 34(10): 1915--1926,Oct. 2012.
M. Holtzman-Gazit, L. Zelnik-Manor and I.Yavne, " Salient Edges: A MultiScale Approach", ECCV 2010 Workshop on Vision for Cognitive Tasks.
S. Goferman, L. Zelnik-Manor, and A. Tal. Context-Aware Saliency Detection. CVPR 2010.
10. 美国西北大学Ying Wu研究组的工作.
Xiaohui Shen and Ying Wu, "A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(Oral), 2012.
11. 清华大学程明明(Ming-Ming Cheng)相关工作。
SalientShape: Group Saliency in Image Collections. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu. Technical Report TR-120624, GGC Group, Tsinghua University.
Global Contrast based Salient Region Detection. Ming-Ming Cheng, Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu. IEEE International Conference on Computer Vision and Pattern Recognition, CVPR2011.
12. MIT Graphics Group, Tilke Judd的研究工作.
Tilke Judd, Understanding and Predicting Where People Look. MIT PhD Thesis of Computer Science, 2011.
Tilke Judd, Frédo Durand, Antonio Torralba, A Benchmark of Computational Models of Saliency to Predict Human Fixations.
currently under review, also available as a 2012 MIT Tech Report.
Tilke Judd, Frédo Durand, Antonio Torralba, Fixations on Low-Resolution Images,Journal of Vision 2011.
Tilke Judd, Krista Ehinger, Frédo Durand, Antonio Torralba.Learning to predict where people look,International Conference on Computer Vision, ICCV 2009.
Judd提供了一个Saliency Benchmark. 并且总结了相关数据集。
http://people.csail.mit.edu/tjudd/SaliencyBenchmark/index.html
13. 大连理工大学卢湖川(Huchuan Lu)老师研究组的工作。
Yulin Xie, Huchuan Lu, Minghsuan Yang, Bayesian Saliency via Low and Mid Level Cues, IEEE Transaction On Image Processing, 2013.
Chuan Yang, Lihe Zhang, Huchuan Lu, Minghsuan Yang, Saliency Detection via Graph-Based Manifold Ranking, CVPR 2013.
自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1
http://blog.csdn.net/anshan1984/article/details/8581225
图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)--计算机视觉专题2
http://blog.csdn.net/anshan1984/article/details/8657176
超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3
http://blog.csdn.net/anshan1984/article/details/8918167
paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)的更多相关文章
- 视觉显著性检测(Visual saliency detection)相关概念
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...
- 图像显著性论文(一)—A Model of saliency Based Visual Attention for Rapid Scene Analysis
这篇文章是图像显著性领域最具代表性的文章,是在1998年Itti等人提出来的,到目前为止引用的次数超过了5000,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要 ...
- paper 14 : 图像视觉领域部分开源代码
做图像处理,没有一定的知识储备是不可能的,但是一定要学会“借力打力”,搜集一些很实用的开源代码,你们看看是否需要~~ 场景识别: SegNet: A Deep Convolutional Encode ...
- paper 116:自然图像抠图/视频抠像技术梳理(image matting, video matting)
1. Bayesian Matting, Chuang, CVPR 2001.http://grail.cs.washington.edu/projects/digital-matting/paper ...
- 图像局部显著性—点特征(Fast)
fast作为几乎最快的角点检测算法,一般说明不附带描述子.参考综述:图像的显著性检测--点特征 详细内容,请拜访原=文章:Fast特征点检测算法 在局部特征点检测快速发展的时候,人们对于特征的认识也越 ...
- paper 98:图像视觉各个领域文献目录
当前图像视觉各个领域文献资料的索引,包含计算机视觉.图像处理.文本(图像)分析.视频分析.模式识别等主题.如果对哪个方向比较感兴趣,可以查看这个方向的比较重要的Paper,每一个大的目录后面都对应一些 ...
- CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...
- 转:SLAM算法解析:抓住视觉SLAM难点,了解技术发展大趋势
SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的 ...
- paper 92:图像视觉博客资源2之MIT斯坦福CMU
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...
随机推荐
- js解析Json字符串的方法
要把一个xml字符串转(“1,2,3,4,5,6,7,8,1,2”)换成数组的形式,每个值都应该是number类型的,想当然的就用了split方法,结果...问题来了,服务器要求数组的值是数字,而 ...
- HBase的安装部署以及简单使用
一:下载安装 1.下载安装 2.开启hadoop与zookeeper 3.修改配置文件hbase-env export JAVA_HOME=/opt/modules/jdk1.7.0_67 expor ...
- PM2的使用
PM2 是一个带有负载均衡功能的 Node 应用的进程管理器. 安装 npm install -g pm2 启动程序:pm2 start <app_name|id|all> 列举进程:pm ...
- Popwindow自定义动画(nexus5不支持暂未解决)
遇到一个问题,先记录一下 PopWindow自定义动画 import android.app.Activity; import android.graphics.drawable.BitmapDraw ...
- 用户交互与while循环<代码>
#用户交互1 age_oldboy = 56 guess_age = int(input(">>:")) if guess_age == age_oldboy: pri ...
- 在bash shell中使用getfattr查看文件扩展属性
getfattr用法 用于获取文件扩展属性,返回一系列键值对,参考Linux Man Page. 常用OPTIONS -n name, --name=name Dump the value of th ...
- HTML:Input元素标签的详细介绍
总结Input的标签: Input表示Form表单中的一种输入对象,其又随Type类型的不同而分文本输入框,密码输入框,单选/复选框,提交/重置按钮等,下面一一介绍.1,type=text输入类型是t ...
- 第三篇 SQL Server代理警报和操作员
本篇文章是SQL Server代理系列的第三篇,详细内容请参考原文. 正如这一系列的上一篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行,除了步骤中执行的工 ...
- python_模块
1. 模块的导入 (1) python中import module时,系统通常在哪些路径下面查找模块? 在以下的路径查找模块:sys.path 如果你模块所在的目录,不在sys.path的目录下,可以 ...
- SQL Server 2008 R2 数据库安装
操作系统 Windows server 2008 R2 数据库 SQL Server 2008 R2 注意:SQL Server 2008 R2需要操作系统首先安装.NET Frame ...