Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13345    Accepted Submission(s): 4146

Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
 
Input
One positive integer on each line, the value of n.
 
Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.

 
Sample Input
2
5
 
Sample Output
2^? mod 2 = 1
2^4 mod 5 = 1
 
Author
MA, Xiao
 
#include<cstdio>
#include<cmath>
int Powermod(int a,int b,int c)//快速幂
{
int ans=1;
if(a%c==0) return 0;
a=a%c;
while(b)
{
if(b&1)
ans=ans*a%c;
a=a*a%c;
b>>=1;
}
return ans; }
int main()
{
int i,n;
//奇数除了1一定有结果,偶数一定没结果
while(~scanf("%d",&n))
{
if(n%2==0||n==1)//2^x对偶数求余结果为偶数,不为1 1的时候结果也不存在
{printf("2^? mod %d = 1\n",n);continue;}
for(i=1;; i++)//对于2^x mod n,当1<=i<=n 就能得到所有求余结果
if(Powermod(2,i,n)==1)
{
printf("2^%d mod %d = 1\n",i,n);
break;
} }
}

  

2^x mod n = 1的更多相关文章

  1. 函数mod(a,m)

    Matlab中的函数mod(a,m)的作用: 取余数 例如: mod(25,5)=0; mod(25,10)=5; 仅此.

  2. ORACLE 数据库 MOD 函数用法

    1.求2和1的余数. Select mod(2,1) from dual: 2能被1整除所以余数为0. 2.MOD(x,y)返回X除以Y的余数.如果Y是0,则返回X的值. Select mod(2,0 ...

  3. 黑科技项目:英雄无敌III Mod <<Fallen Angel>>介绍

    英雄无敌三简介(Heroes of Might and Magic III) 英3是1999年由New World Computing在Windows平台上开发的回合制策略魔幻游戏,其出版商是3DO. ...

  4. [日常训练]mod

    Description 给定$p_1,p_2,-,p_n,b_1,b_2,...,b_m$, 求满足$x\;mod\;p_1\;\equiv\;a_1,x\;mod\;p_2\;\equiv\;a_2 ...

  5. Apache Mod/Filter Development

    catalog . 引言 . windows下开发apache模块 . mod进阶: 接收客户端数据的 echo 模块 . mod进阶: 可配置的 echo 模块 . mod进阶: 过滤器 0. 引言 ...

  6. FZU 1752 A^B mod C(快速加、快速幂)

    题目链接: 传送门 A^B mod C Time Limit: 1000MS     Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了 ...

  7. HDOJ 4389 X mod f(x)

    数位DP........ X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  9. 对于一个负数mod正数

    鸟神说.. a/b靠零取整 然后呢..a%b定义成a-(a/b)*b c语言就是这么算的... 那么python2.6是怎么算的呢 如果最后你取模想得到一个正数.. 那么在上述取模定义不变的情况下 p ...

  10. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

随机推荐

  1. cocos基础教程(10)纹理缓存技术

    Cocos2d通过调用CCTextureCache或者CCSpriteFrameCache来缓存精灵的纹理. 当这个精灵调用CCTextureCache 或 CCSpriteFrameCache的方法 ...

  2. Spring AOP使用整理:各种通知类型的介绍

    2.PersonImpl类的源码 public class PersonImpl implements Person { private String name; private int age; p ...

  3. Unity运行时刻资源管理

    原地址:http://www.cnblogs.com/88999660/archive/2013/04/03/2998157.html Unity运行时刻资源管理 ------------------ ...

  4. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  5. BZOJ 1602 USACO2008 Oct 牧场行走

    翻翻吴大神的刷题记录翻到的... 乍一看是一个树链剖分吓瓜我...难不成吴大神14-10-28就会了树剖?orz... 再一看SB暴力都可过... 然后一看直接树上倍增码个就好了... 人生真是充满着 ...

  6. ZJOI 游记

    在备战YZ提前招生考时去ZJOI玩了趟,ZJ果然人才辈出= =神犇讲课各种神听不懂啊orz day 0 Mon. 上午在AB班愉快地玩耍,下午就去HZ了. HZ真热啊... 学军也是节约= =空调都不 ...

  7. Watering the Fields(irrigation)

    #include <cstdio> #include <algorithm> struct edge{ int f,t,w; } ed[5000000]; int pl,n,c ...

  8. set_include_path详细解释

    zendframework的示例index.php里有这样一句 set_include_path('.' . PATH_SEPARATOR . '../library/'. PATH_SEPARATO ...

  9. 《转》常用Petri网模拟软件工具简介

    本文转载自liusj2003,如给您带来不便之处,请联系博主. 首先要介绍的的一个非常有名的Petri 网网站--Petri Nets World: http://www.informatik.uni ...

  10. Product of Array Exclude Itself

    Given an integers array A. Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WI ...