Mubashwir returned home from the contest and got angry after seeing his room dusty. Who likes to see a dusty room after a brain storming programming contest? After checking a bit he found an old toothbrush in his room. Since the dusts are scattered everywhere, he is a bit confused what to do. So, he called Shakib. Shkib said that, 'Use the brush recursively and clean all the dust, I am cleaning my dust in this way!'

So, Mubashwir got a bit confused, because it's just a tooth brush. So, he will move the brush in a straight line and remove all the dust. Assume that the tooth brush only removes the dusts which lie on the line. But since he has a tooth brush so, he can move the brush in any direction. So, he counts a move as driving the tooth brush in a straight line and removing the dusts in the line.

Now he wants to find the maximum number of moves to remove all dusts. You can assume that dusts are defined as 2D points, and if the brush touches a point, it's cleaned. Since he already had a contest, his head is messy. That's why he wants your help.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a blank line. The next line contains three integers N (1 ≤ N ≤ 16)N means that there are N dust points. Each of the next N lines will contain two integers xi yi denoting the coordinate of a dust unit. You can assume that (-1000 ≤ xi, yi ≤ 1000) and all points are distinct.

Output

For each case print the case number and the minimum number of moves.

Sample Input

Output for Sample Input

2

3

0 0

1 1

2 2

3

0 0

1 1

2 3

Case 1: 1

Case 2: 2

题目大意:
 
给你n个点, 求最少的直线将所有的点都覆盖
 
 
记忆化搜索:
 
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef unsigned long long LL;
#define met(a,b) (memset(a,b,sizeof(a)))
const int INF = 1e9+;
const int maxn = ;
const int MOD = ; struct node
{
int x, y;
} a[]; int dp[(<<)], n;
int Line[][];
///Line[i][j] 代表与线段ij共线的点 int DFS(int sta)
{
if(dp[sta]!=-) return dp[sta]; dp[sta] = INF;
int cnt=;
for(int i=; i<n; i++)
if(sta&(<<i)) cnt++; if(cnt==) return dp[sta]=;
else if(cnt<=) return dp[sta]=; for(int i=; i<n; i++)
{
if(sta&(<<i))///第i个物品
{
for(int j=i+; j<n; j++)
{
int w = (sta|Line[i][j]) - Line[i][j];
dp[sta] = min(dp[sta], DFS(w)+);
}
break;
///优化,只需找到sta中的一个点即可, Line[i][j]会将所有的i到i后面的点都遍历一遍的
}
}
return dp[sta];
} int main()
{
int T, iCase = ;
scanf("%d", &T); while(T --)
{
int i, j, k, K;
scanf("%d", &n); K = (<<n)-;
met(dp, -);
met(Line, );
for(i=; i<n; i++)
{
scanf("%d%d", &a[i].x, &a[i].y);
Line[i][i] = (<<i);
} for(i=; i<n; i++)
for(j=i+; j<n; j++)
for(k=; k<n; k++)
{ ///判断三点是否共线
if( (a[i].x-a[k].x)*(a[i].y-a[j].y) == (a[i].x-a[j].x)*(a[i].y-a[k].y) )
Line[i][j] += (<<k);
} printf("Case %d: %d\n", iCase++, DFS(K));
}
return ;
}

先预处理出来每条线段,对每一个状态选择两个不在状态的点,然后画以两个点为端点的线,来进行状态转移

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef unsigned long long LL;
#define met(a,b) (memset(a,b,sizeof(a)))
const int INF = 1e9+;
const int maxn = ;
const int MOD = ; struct node
{
int x, y;
}a[]; vector<int>G[(<<)];
int dp[(<<)], n;
int Line[][];
///Line[i][j] 代表与线段ij共线的点 int main()
{
int T, iCase = , i, j; for(i=; i<(<<); i++)
for(j=; j<; j++)
{
if((i&(<<j))==)
G[i].push_back(j);
} scanf("%d", &T); while(T --)
{
int k, K;
scanf("%d", &n); K = (<<n)-;
met(dp, INF);
met(Line, );
for(i=; i<n; i++)
{
scanf("%d%d", &a[i].x, &a[i].y);
Line[i][i] = (<<i);
} for(i=; i<n; i++)
for(j=i+; j<n; j++)
for(k=; k<n; k++)
{ ///判断三点是否共线
if( (a[i].x-a[k].x)*(a[i].y-a[j].y) == (a[i].x-a[j].x)*(a[i].y-a[k].y) )
Line[i][j] += (<<k);
} dp[] = ;
for(i=; i<K; i++)
{
int len = G[i].size();
int x=G[i][], y;
for(j=; j<len; j++)
{
y = G[i][j];
dp[i|Line[x][y]] = min(dp[i|Line[x][y]], dp[i]+);
}
} printf("Case %d: %d\n", iCase++, dp[K]);
}
return ;
} /** 2 3
0 0
1 1
2 2 3
0 0
1 1
2 3 */
 

(状压) Brush (IV) (Light OJ 1018)的更多相关文章

  1. Light OJ 1018 - Brush (IV)

    题目大意:     一个二维平面上有N个点,一把刷子,刷一次可以把一条线上的所有点都刷掉.问最少刷多少次,可以把全部的点都刷完 状态压缩DP, 用记忆化搜索来写, 需要有个优化不然会超时. ===== ...

  2. Light oj 1018 - Brush (IV) 状态压缩

    题目大意: 给出n个点的坐标,求至少画多少掉直线才能连接所有点. 题目思路:状态压缩 首先经行预处理,求出所有状态下,那些点不在该状态内 以任意两点为端点求出这条直线的状态 枚举所有状态,找出不在当前 ...

  3. LightOJ1018 Brush (IV)(状压DP)

    题目大概说一个平面有n个灰尘,可以用一把刷子直直刷过去清理直线上的所有灰尘,问最少要刷几下才能清理完所有灰尘. 首先怎么刷其实是可以确定的,或者说直线有哪些是可以确定的,而最多就有C(n,2)条不一样 ...

  4. Light OJ 1011 - Marriage Ceremonies(状压DP)

    题目大意: 有N个男人,和N个女人要互相匹配,每个男人和每个女人有个匹配值. 并且匹配只能是1对1的. 问所有人都匹配完成,最大的匹配值是多少?   状压DP,暴力枚举就OK了, 这个题目略坑,因为他 ...

  5. 江南OJ 1151 - 还是晒太阳 - [状压DP]

    题目链接:校内OJ的题目,就不放链接了. PS.可以说是本次9月月赛唯一的一道有一定难度的题目了. 题解: 考虑状压DP,假设 $sta$ 是一个二进制数,代表当前 $n$ 个人有几个是在队伍里的,剩 ...

  6. Lightoj 1018 - Brush (IV)

    1018 - Brush (IV)    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Muba ...

  7. 1018 - Brush (IV)

    1018 - Brush (IV)    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Muba ...

  8. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  9. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

随机推荐

  1. DEV中dx:ASPxPopupControl 控件的使用(在窗口关闭或隐藏时,清楚文本框中的内容)

    //在窗口关闭或隐藏时,清楚文本框中的内容(核心代码) function(s, e) { ASPxClientEdit.ClearGroup('entryGroup'); } <asp:Cont ...

  2. 纸上谈兵:AVL树

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点 ...

  3. 第五百八十一天 how can I 坚持

    也是醉了,现在买个手机都特么搞饥饿营销,吹牛B就要付出吹牛B的代价,哎,好伤感. 晚上学习也没学好.感觉人和人之间的信任怎么都没了呢..但愿是我想多了,其实就是我想多了,以后说话还是要多注意. 睡觉吧 ...

  4. python基础知识---变量

    一.变量是什么? python变量是对内存中一个数据结构的引用,用一个变量给另外一个变量赋值,那就有两个变量引用同一个数据结构(数字.字符串.列表.元组.字典.自定义对象等) 当一个数据结构的引用计数 ...

  5. centos6.x下手工安装二进制Docker v1.1x

    Docker在 centos 6.x 下面默认最新的版本是1.7, 然而这个并不符合我的实际需求, 尤其我需要 docker-compose 来作为编配工具部署swarm, 所以只有使用二进制的安装包 ...

  6. [笔记]Altera系列01:常用资料下载链接

    Altera官方文档 Altera Product Catalog 外部存储器规范估算器 To be continued.

  7. notepad++ 右键

    在网上搜索建立reg 后运行, 虽然右键菜单出现了建立的右键项目名,但与软件不关联 Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\*\ ...

  8. VC++ 用setsockopt()来控制recv()与send()的超时

    在send(),recv()过程中有时由于网络状况等原因,收发不能预期进行,而设置收发超时控制: 以下是来自于网上一篇文章中的摘录,它是这样写的: ;//1秒, //设置发送超时 setsockopt ...

  9. hdu 3667 拆边加最小费用流

    Transportation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. Unsupported major.minor version

    by: java.lang.UnsupportedClassVersionError: com/dayang/product/pubinfo/dao/ProPubInfoDAO : Unsupport ...