http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/

The Fibonacci problem is a well known mathematical problem that models population growth and was conceived in the 1200s. Leonardo
of Pisa
 aka Fibonacci decided to use a recursive equation: xn=xn−1+xn−2 with
the seed values x0=0 and x1=1.
Implementing this recursive function is straightforward:1

1
2
3
4
def fib(n):
if n==0: return 0
if n==1: return 1
else: return fib(n-1) + fib(n-2)

Since the Fibonacci sequence was conceived to model population growth, it would seem that there should be a simple equation that grows almost exponentially. Plus, this recursive calling is expensive both in time and memory.2.
The cost of this function doesn’t seem worthwhile. To see the surprising formula that we end up with, we need to define our Fibonacci problem in a matrix language.3

[xnxn−1]=xn=A⋅xn−1=[1110]⋅[xn−1xn−2]

Calling each of those matrices and vectors variables and recognizing the fact that xn−1 follows
the same formula as xn allows
us to write

xn=A⋅xn−1=A⋅A⋯A⋅x0=An⋅x0

where we have used An to
mean n matrix
multiplications
. The corresponding implementation looks something like this:

1
2
3
4
5
def fib(n):
A = np.asmatrix('1 1; 1 0')
x_0 = np.asmatrix('1; 0')
x_n = np.linalg.matrix_power(A, n).dot(x_0)
return x_n[1]

While this isn’t recursive, there’s still an n−1 unnecessary
matrix multiplications. These are expensive time-wise and it seems like there should be a simple formula involving n.
As populations grow exponentially, we would expect this formula to involve scalars raised to the nth
power. A simple equation like this could be implemented many times faster than the recursive implementation!

The trick to do this rests on the mysterious and intimidating eigenvalues and eigenvectors. These are just a nice way to view the same data but they have a lot
of mystery behind them. Most simply, for a matrix A they
obey the equation

A⋅x=λ⋅x

for different eigenvalues λ and
eigenvectors x.
Through the way matrix multiplication is defined, we can represent all of these cases. This rests on the fact that the left multiplied diagonal matrix Λjust
scales each xi by λi.
The column-wise definition of matrix multiplication makes it clear that this is represents every case where the equation above occurs.

A⋅[x1x2]=[x1x2]⋅[λ100λ2]

Or compacting the vectors xi into
a matrix called X and
the diagonal matrix of λi’s
into Λ,
we find that

A⋅X=X⋅Λ

Because the Fibonacci eigenvector matrix is invertible,4

A=X⋅Λ⋅X−1

And then because a matrix and it’s inverse cancel

An=X⋅Λ⋅X−1⋅…⋅X⋅Λ⋅X−1=X⋅Λn⋅X−1

Λn is
a simple computation because Λ is
a diagonal matrix: every element is just raised to the nth
power. That means the expensive matrix multiplication only happens twice now. This is a powerful speed boost and we can calculate the result by substituting for An

xn=X⋅Λn⋅X−1⋅x0

For this Fibonacci matrix, we find that Λ=diag(1+5√2,1−5√2)=diag(λ1,λ2).
We could define our Fibonacci function to carry out this matrix multiplication, but these matrices are simple: Λ is
diagonal and x0=[1;0].
So, carrying out this fairly simple computation gives

xn=15√(λn1−λn2)≈15√⋅1.618034n

We would not expect this equation to give an integer. It involves the power of two irrational numbers, a division by another irrational number and even the golden ratio phi ϕ≈1.618!
However, it gives exactly the Fibonacci numbers – you can check yourself!

This means we can define our function rather simply:

1
2
3
4
5
6
7
def fib(n):
lambda1 = (1 + sqrt(5))/2
lambda2 = (1 - sqrt(5))/2
return (lambda1**n - lambda2**n) / sqrt(5)
def fib_approx(n)
# for practical range, percent error < 10^-6
return 1.618034**n / sqrt(5)

As one would expect, this implementation is fast. We see speedups of roughly 1000 for n=25,
milliseconds vs microseconds. This is almost typical when mathematics are applied to a seemingly straightforward problem. There are often large benefits by making the implementation slightly more cryptic!

I’ve found that mathematics5 becomes
fascinating, especially in higher level college courses, and can often yield surprising results. I mean, look at this blog post. We went from a expensive recursive equation to a simple and fast equation that only involves scalars. This derivation is one I
enjoy and I especially enjoy the simplicity of the final result. This is part of the reason why I’m going to grad school for highly mathematical signal processing. Real world benefits + neat
theory = <3.

  1. The complete implementation can be found on Github.

  2. Yes, in some languages some compilers are smart enough to get rid of recursion for some functions.

  3. I’m assuming you have taken a course that deals with matrices.

  4. This happens when a matrix is diagonalizable.

  5. Not math. Courses beyond calculus deserve a different name.

Posted by Scott
Sievert Jan 31st, 2015  math

Applying Eigenvalues to the Fibonacci Problem的更多相关文章

  1. [Algorithm] Fibonacci problem by using Dynamic programming

    vThere are three ways to solve Fibonacci problem Recursion Memoize Bottom-up 'First Recursion approa ...

  2. Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_ ...

  3. hdu 1568 Fibonacci 数学公式

    Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = ...

  4. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

  5. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU:Gauss Fibonacci(矩阵快速幂+二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...

  7. HDU 4099 Revenge of Fibonacci Trie+高精度

    Revenge of Fibonacci Problem Description The well-known Fibonacci sequence is defined as following: ...

  8. 跨平台的CStdString类,实现了CString的接口

    在实际工作中,std的string功能相对于MFC的CString来说,实在是相形见绌. CStdString类实现了CString的功能,支持跨平台. // ==================== ...

  9. Minimum Depth of Binary Tree 解答

    Question Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along ...

随机推荐

  1. [经验分享] 最近调试FT232H遇到的坑

    cnblogs.com Yeats叶子 原创,转载请注明原始地址 - http://www.cnblogs.com/xiedidan/p/ft232h-poc.html Abstract FT232H ...

  2. 什么是json

    http://www.ruanyifeng.com/blog/2009/05/data_types_and_json.html http://edu.51cto.com/lesson/id-71123 ...

  3. C语言 百炼成钢13

    //题目37:将一个数组逆序输出.用第一个与最后一个交换. #include<stdio.h> #include<stdlib.h> #include<math.h> ...

  4. SpringMVC Controller介绍(转)

    SpringMVC Controller 介绍 一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理 ...

  5. [转]SQLServer跨服务器访问数据库(openrowset/opendatasource/openquery)

    正 文: 1.启用Ad Hoc Distributed Queries 在使用openrowset/opendatasource前搜先要启用Ad Hoc Distributed Queries服务,因 ...

  6. python学习三

    输入与输出 print()在括号中加上字符串,就可以向屏幕上输出指定的文字. >>>print('hello world')hello world print()函数也可以接受多个字 ...

  7. C#获取枚举描述代码

    public class MusterEnum { /// 获取枚举的描述信息 /// </summary> /// <param name="e">传入枚 ...

  8. 异步编程 In .NET(转)

    转自:http://www.cnblogs.com/jesse2013/p/Asynchronous-Programming-In-DotNet.html 概述 在之前写的一篇关于async和awai ...

  9. Thrift搭建分布式微服务(一)

    一.Thrift是什么? 关于Thrift的基本介绍,参看张善友的文章Thrift简介. 二.为什么使用微服务? 在公司的高速发展过程中,随着业务的增长,子系统越来越多.各系统间又不同程度的在某些逻辑 ...

  10. Unity3D UGUI中ScrollRect的一些知识点

    需求 这几天在公司里,项目需要将游戏游戏中的2D城堡界面在拉动的时候显示出3D的拉近效果.当时是在Cocos2d-x下实现的.回家的时候自己重新用Unity实现的了一遍. 虽然现在Unity已经到了5 ...