A - Noldbach problem

题面链接

http://codeforces.com/contest/17/problem/A

题面

Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.

Two prime numbers are called neighboring if there are no other prime numbers between them.

You are to help Nick, and find out if he is right or wrong.

输入

The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

输出

Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

题意

问你在[2,n]里面是否至少有k个质数由1+两个相邻的素数组成呢?

题解

直接暴力模拟就好了嘛

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int pri[maxn],n,k;
void pre()
{
pri[0]=1,pri[1]=1;
for(int i=2;i<maxn;i++){
if(pri[i])continue;
for(int j=i+i;j<maxn;j+=i)
pri[j]=1;
}
}
int main()
{
pre();
scanf("%d%d",&n,&k);
int ans = 0;
for(int i=2;i<=n;i++){
if(pri[i])continue;
int flag = 0;
for(int j=2;j<i;j++){
if(pri[j])continue;
for(int k=j+2;k+j<=i;k++){
if(!pri[k]&&!pri[j]&&k+j==i-1)
flag = 1;
if(!pri[k])break;
}
}
if(flag)ans++;
}
if(ans>=k)cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}

Codeforces Beta Round #17 A - Noldbach problem 暴力的更多相关文章

  1. Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)

    Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...

  2. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

  3. Codeforces Beta Round #17 A.素数相关

    A. Noldbach problem Nick is interested in prime numbers. Once he read about Goldbach problem. It sta ...

  4. Codeforces Beta Round #13 E. Holes 分块暴力

    E. Holes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/13/problem/E Des ...

  5. Codeforces Beta Round #2 C. Commentator problem 模拟退火

    C. Commentator problem 题目连接: http://www.codeforces.com/contest/2/problem/C Description The Olympic G ...

  6. Codeforces Beta Round #37 B. Computer Game 暴力 贪心

    B. Computer Game 题目连接: http://www.codeforces.com/contest/37/problem/B Description Vasya's elder brot ...

  7. Codeforces Beta Round #10 B. Cinema Cashier 暴力

    B. Cinema Cashier 题目连接: http://www.codeforces.com/contest/10/problem/B Description All cinema halls ...

  8. Codeforces Beta Round #17 C. Balance (字符串计数 dp)

    C. Balance time limit per test 3 seconds memory limit per test 128 megabytes input standard input ou ...

  9. Codeforces Beta Round #17 D.Notepad 指数循环节

    D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...

随机推荐

  1. DP专题——括号序列

    毕竟是个渣,写完一遍之后又按LRJ的写了一遍,再写了一遍递归版,最终加上输出解部分 括号序列 定义如下规则序列(字符串): 空序列是规则序列: 如果S是规则序列,那么(S)和[S]也是规则序列: 如果 ...

  2. git flow的安装和使用

    确保安装了git 1.windows系统下安装 进入cmd clone github上的gitflow到一个文件夹下 我这里clone到 c:\gitflow git clone git://gith ...

  3. smartimageview使用与实现原理

    一.从网络中获取图片的步骤 从网络中获取图片是一个耗时耗资源耗费用户流量的操作,故我们在第一次获取到网络中图片的时候会将其缓存到本地(内存或SD卡),以保证下次再需要这张图片时,可以从本地加载到. 二 ...

  4. Titanium系列--Titanium的简介、Titanium Studio安装和配置(一)

    1. 是什么?--是一个可以通过javascript,html,css等web技术开发移动App的的开发框架,媲美原生App体验和性能,目前支持IOS和Android平台. 2. 为什么能做这个? - ...

  5. [UE4]武器碰撞

    实现武器战斗伤害系统,击中时如何发出碰撞事件产生伤害,目前探索的有通过物理碰撞和LineTrace两种方法. 物理碰撞通过Overlap事件的方法,优点是易于实现,缺点是无法具体到碰撞骨骼位置,低帧数 ...

  6. Poj-1157-LITTLE SHOP OF FLOWERS

    题意为从每行取一瓶花,每瓶花都有自己的审美价值 第 i+1 行取的花位于第 i 行的右下方 求最大审美价值 dp[i][j]:取到第 i 行,第 j 列时所获得的最大审美价值 动态转移方程:dp[i] ...

  7. Docker Hub仓库注册,使用

    首先保证可以访问Docker Hub,所以需要先把host替换一下 : Google hosts ; 然后就是注册Docker Hub账户:https://hub.docker.com/; 然后就是在 ...

  8. C#设计模式(9)——装饰者模式(Decorator Pattern)

    一.引言 在软件开发中,我们经常想要对一类对象添加不同的功能,例如要给手机添加贴膜,手机挂件,手机外壳等,如果此时利用继承来实现的话,就需要定义无数的类,如StickerPhone(贴膜是手机类).A ...

  9. Jpeg2000 简介

    http://www.baike.com/wiki/Jpeg2000 总结Jpeg2000的六个方面:    ⑴ JPEG2000可以方便地实现渐进式传输,这是JPEG2000的重要特征之一.看到这种 ...

  10. C++ Primer学习笔记二

    vector<int> a(10,0); for(vector<int>::iterator itor=a.begin();itor!=a.end();itor++) *ito ...