普通的贪心题。

虽然图是二维的,但可以把横向和纵向分开处理。

将区间按右端点排序,然后从区间左端点到右端点找第一个空位置放棋子即可。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct rec{
int x1,x2;
int y1,y2;
int id;
}a[mxn];
int cmpx(rec a,rec b){return a.x2<b.x2;}
int cmpy(rec a,rec b){return a.y2<b.y2;}
int n;
int px[mxn],py[mxn];
bool vis[mxn];
bool flag=;
void SovX(){
memset(vis,,sizeof vis);
int tmp;
for(int i=;i<=n;i++){
tmp=a[i].x1;
while(vis[tmp])tmp++;
if(tmp>a[i].x2)flag=;
vis[tmp]=;
px[a[i].id]=tmp;
}
return;
}
void SovY(){
memset(vis,,sizeof vis);
int tmp;
for(int i=;i<=n;i++){
tmp=a[i].y1;
while(vis[tmp])tmp++;
if(tmp>a[i].y2)flag=;
vis[tmp]=;
py[a[i].id]=tmp;
}
return;
} int main(){
int i,j;
while(scanf("%d",&n) && n){
flag=;
for(i=;i<=n;i++){
a[i].x1=read();a[i].y1=read();
a[i].x2=read();a[i].y2=read();
a[i].id=i;
}
sort(a+,a+n+,cmpx);
SovX();
sort(a+,a+n+,cmpy);
SovY();
if(!flag)printf("IMPOSSIBLE\n");
else{
for(i=;i<=n;i++){
printf("%d %d\n",px[i],py[i]);
}
}
}
return ;
}

Uva11134 Fabled Rooks的更多相关文章

  1. uva11134 - Fabled Rooks(问题分解,贪心法)

    这道题非常好,不仅用到了把复杂问题分解为若干个熟悉的简单问题的方法,更是考察了对贪心法的理解和运用是否到位. 首先,如果直接在二维的棋盘上考虑怎么放不好弄,那么注意到x和y无关(因为两个车完全可以在同 ...

  2. UVA-11134 Fabled Rooks 贪心问题(区间贪心)

    题目链接:https://cn.vjudge.net/problem/UVA-11134 题意 在 n*n 的棋盘上,放上 n 个车(ju).使得这 n 个车互相不攻击,即任意两个车不在同一行.同一列 ...

  3. UVA - 11134 Fabled Rooks[贪心 问题分解]

    UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...

  4. 01_传说中的车(Fabled Rooks UVa 11134 贪心问题)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P81: 问题描述:你的任务是在n*n(1<=n<=5000)的棋盘上放n辆车,使得任意两辆车不相互攻击,且第i辆车在一个给定 ...

  5. L - Fabled Rooks(中途相遇法和贪心)

    Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...

  6. 贪心 uvaoj 11134 Fabled Rooks

    Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...

  7. uva 11134 - Fabled Rooks(问题转换+优先队列)

    题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...

  8. 8-4 Fabled Rooks uva11134

    题意:你的任务是在n*n的棋盘上放 n 小于5000 个车 使得任意两个车不互相攻击 且第i个车在一个给定的矩形ri之内  给出该矩形左上角坐标和右下角坐标四个点  必须满足放车的位置在矩形内  边上 ...

  9. uva 11134 fabled rooks (贪心)——yhx

    We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...

随机推荐

  1. JavaEE

    1.  为什么需要JavaEE 我们编写的JSP代码中,由于大量的显示代码和业务逻辑混淆在一起,彼此嵌套,不利于程序的维护和扩展.当业务需求发生变化的时候,对于程序员和美工都是一个很重的负担. 为了程 ...

  2. 九、Foundation框架中的NSString常用方法

    一.NSString的创建 方式1创建常量字符串 NSString *st = @"this is string!"; //这种方式创建的字符串不需要释放 方式2创建空字符串,给予 ...

  3. 13Mybatis_SqlMapConfig.xml专题讲解

    Mybatis的SqlMapConfig.xml中以下的标签: properties(属性) settings(全局配置参数) typeAliases(类型别名) typeHandlers(类型处理器 ...

  4. java String.getBytes()编码问题——String.getBytes(charset)

    String的getBytes()方法是得到一个字串的字节数组,这是众所周知的.但特别要注意的是,本方法将返回该操作系统默认的编码格式的字节数组.如果你在使用这个方法时不考虑到这一点,你会发现在一个平 ...

  5. 0.1 hint crack

    http://files.cnblogs.com/files/crac/27.rar

  6. Got a packet bigger than 'max_allowed_packet' bytes

    昨天用导入数据的时候发现有的地方有这个错误.后来才发现我用RPM包装的MYSQL配置文件里面有old_passwords=1去掉就可以了. Got a packet bigger than ‘max_ ...

  7. MVC中利用自定义的ModelBinder过滤关键字

    上一篇主要讲解了如何利用ActionFilter过滤关键字,这篇主要讲解如何利用自己打造的ModelBinder来过滤关键字. 首先,我们还是利用上一篇中的实体类,但是我们需要加上DataType特性 ...

  8. Linux第六次学习笔记

    存储器层次结构 存储器系统是一个具有不同容量.成本和访问时间的存储设备的层次结构. CPU寄存器保存着最常用的数据. 主存储器(简称主存)暂时存放存储在容量较大的.慢速磁盘上的数据. 高速缓存存储器作 ...

  9. PowerCMD——cmd的命令行工具

    之前就想整理一下程序员经常使用的一些工具,最近有时间正好整理一下. 有句话叫做:“工欲善其事必先利其器”,而我就算是搜集工具组装成一个系列——善事利器,来记录一下工作学习中常用的一些工具. 总结起来, ...

  10. 《Linux及安全》实验安排

    SEED(SEcurity EDucation)项目由雪城大学杜文亮教授2002年创立,为计算机教学提供一套信息安全实验环境,目前已开发超过30个实验,涵盖广泛的安全原理,被全世界数百个高校采用. 实 ...