Connected Graph
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3156   Accepted: 1533

Description

An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v) of vertices,u is reachable from v.
You are to write a program that tries to calculate the number of different connected undirected graph with n vertices.

For example,there are 4 different connected undirected graphs with 3 vertices.

Input

The
input contains several test cases. Each test case contains an integer n,
denoting the number of vertices. You may assume that 1<=n<=50.
The last test case is followed by one zero.

Output

For each test case output the answer on a single line.

Sample Input

1
2
3
4
0

Sample Output

1
1
4
38

Source

 
 
 
n个点之间任取两点连边,按照组合数公式,共有$ C(n,2)=n*(n-1)/2 $条边可连
每条边可连可不练,所以总情况有 P=2^C(n,2) 种。
我们要求的是所有点都连通的情况数,可以用总数P减去不连通的情况数
设F[i]为i个点构成连通图的情况数,任取一点为基准,当与其构成连通图的点有j-1个时,共有F[j]种连通情况。则若在总图中有j个点一定连通,共有$C(i-1,j-1)*F[j] $种情况,而剩下的点可以随意连边,共有$2^C(i-j,2)$种情况。
若总点数为i,则答案为:$F[i]=P[i]-sum$;   sum=sum+(C(i-1,j-1)*F[j]*2^C(i-j,2))    {1<=j<i 累加求和}
 
然而高精度各种写不对,我选择死亡。
 
先放一张表
 INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:
INPUT:
OUTPUT:

打表

然后是我一直改不对的代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct bgnum{
int l;
int a[];
bgnum operator + (const bgnum &x) const{
bgnum ans;
memset(ans.a,,sizeof(ans.a));
int len=max(l,x.l);
ans.l=;
for(int i=;i<=len;i++){
ans.a[i]+=a[i]+x.a[i];
ans.a[i+]+=ans.a[i]/;
ans.a[i]%=; }
len++;
while(!ans.a[len]&&len)len--;
ans.l=len;
return ans;
}
bgnum operator - (const bgnum &x) const{
bgnum ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=l;i++){
ans.a[i]+=a[i]-x.a[i];
if(ans.a[i]<){
ans.a[i]+=;
ans.a[i-]--;
}
}
ans.l=l;
while(!ans.a[ans.l] && ans.l) ans.l--;
return ans;
}
bgnum operator * (const bgnum &x) const{
bgnum ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=l;i++)
for(int j=;j<=x.l;j++){
ans.a[i+j-]+=a[i]*x.a[j];
ans.a[i+j]+=ans.a[i+j-]/;
ans.a[i+j-]%=;
}
int len=l+x.l;
while(!ans.a[len] && len)len--;
ans.l=len;
return ans;
}
}f[],//[i]个点构不同图的方案数
c[][],//[i]个点中选[j]个任意连边的方案数
mi[],//2的[i]次方
sum; void Print(bgnum p){
for(int i=p.l;i>=;i--){
printf("%d",p.a[i]);
}
printf("\n");
return;
}
bgnum p1,p2;
int main(){
p1.l=;p1.a[]=;//高精度数1
p2.l=;p2.a[]=;//高精度数2
int i,j;
mi[]=p1;
for(i=;i<=;i++)
mi[i]=mi[i-]*p2;
for(i=;i<=;i++)
c[i][]=p1;
for(i=;i<=;i++)
for(j=;j<=i;j++){
c[i][j]=c[i-][j]+c[i-][j-];//组合数递推公式
}
for(i=;i<=;i++){
sum.l=;
memset(sum.a,,sizeof(sum.a));
for(j=;j<i;j++){
sum=sum+(c[i-][j-]*f[j]*mi[(i-j)*(i-j-)/]);
}
// Print(sum);
f[i]=mi[i*(i-)/]-sum;
}
int n;
scanf("%d",&n);
Print(f[n]);
return ;
}

再放隔壁某dalao的AC题解

http://blog.csdn.net/orion_rigel/article/details/51812864

POJ1737 Connected Graph的更多相关文章

  1. 【Java】【高精度】【组合数】【递推】poj1737 Connected Graph

    http://blog.csdn.net/sdj222555/article/details/12453629 这个递推可以说是非常巧妙了. import java.util.*; import ja ...

  2. [poj1737]Connected Graph(连通图计数)

    题意:输出题中带有$n$个标号的图中连通图的个数. 解题关键: 令$f(n)$为连通图的个数,$g(n)$为非联通图的个数,$h(n)$为总的个数. 则$f(n) + g(n) = h(n)$ 考虑标 ...

  3. $Poj1737\ Connected\ Graph$ 计数类$DP$

    AcWing Description 求$N$个节点的无向连通图有多少个,节点有标号,编号为$1~N$. $1<=N<=50$ Sol 在计数类$DP$中,通常要把一个问题划分成若干个子问 ...

  4. poj 1737 Connected Graph

    // poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...

  5. POJ 1737 Connected Graph 题解(未完成)

    Connected Graph Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3156   Accepted: 1533 D ...

  6. Connected Graph

    Connected Graph 求n个点的无向联通图数量,\(n\leq 50\). 解 直接无向联通图做状态等于是以边点做考虑,难以去重,考虑联通对立面即不联通. 不难求出n个点的总方案数为\(2^ ...

  7. 【poj1737】 Connected Graph

    http://poj.org/problem?id=1737 (题目链接) 题意 求n个节点的无向连通图的方案数,不取模w(゚Д゚)w Solution 刚开始想了个第二类斯特林数,然而并不知道怎么求 ...

  8. POJ 1737 Connected Graph(高精度+DP递推)

    题面 \(solution:\) 首先做个推销:带负数的压位高精度(加减乘+读写) 然后:由 \(N\) 个节点组成的无向图的总数为: \(2^{N*(N-1)/2}\) (也就是说这个图总共有 \( ...

  9. POJ 1737 Connected Graph (大数+递推)

    题目链接: http://poj.org/problem?id=1737 题意: 求 \(n\) 个点的无向简单(无重边无自环)连通图的个数.\((n<=50)\) 题解: 这题你甚至能OEIS ...

随机推荐

  1. UICollectionView使用

    本文原文 原文转自 1.1. Collection View 全家福: UICollectionView, UITableView, NSCollectionView n   不直接等效于NSColl ...

  2. isAnimated函数

    function isAnimated($obj){ var flag=false; if($obj.is(":animated")){ flag=true; } return f ...

  3. POJ 1182 食物链

    G - 食物链 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  4. C语言 百炼成钢15

    //题目43:有n个人围成一圈,顺序排号.从第一个人开始报数(从1到3报数),凡报到3的人退出 //圈子,问最后留下的是原来第几号的那位. #include<stdio.h> #inclu ...

  5. Discuz X3核心文件解析

    <?php /** *      [Discuz!] (C)2001-2099 Comsenz Inc. *      This is NOT a freeware, use is subjec ...

  6. SQLServer如何删除字段中的某个字符串,或者替换为空格?

    sql="update Table set 字段=REPLACE ( 字段,'123' , ' ') where XXX条件"把字段中123替换为空格

  7. 安卓界面篇(一) 自定义一个topbar

    步骤一: 先在values 里 新建一个attrs.xml 来设置我们的属性值: <?xml version="1.0" encoding="utf-8" ...

  8. jquery-lazyload延迟加载图片 及 加载顺序 bug 修复

    jquery-lazyload延迟加载图片   代码修改片段 function update() { var counter = 0; /**fix by weiyj start***/ elemen ...

  9. Activiti系列——如何在eclipse中安装 Activiti Designer插件

    这两天在评估jbpm和Activiti,需要安装一个Activiti Designer插件试用一下. 一.在线安装 从<Activiti实战>了解到可以通过如下方式安装 打开Eclipse ...

  10. Jenkins进阶之自动发送邮件的Default Content设置模板

    分享一个简洁实用的Jenkins项目邮件管理系统的"Default Content"设置模板 配置如下: <h1><center><font colo ...