Alignment
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 11450 Accepted: 3647

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions: 
2 <= n <= 1000 
the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

DP两遍LIS,
a1<a2<a3<.....<ai<=>ai+1>ai+2>ai+3>....a+n

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int getLIS(int* a,int len)
{
    int dp[1100],cnt=1;
    dp[0]=a[0];
    for(int i=1;i<len;i++)
    {
        if(dp[cnt-1]<a)
        {
            dp[cnt++]=a;
        }
        else
        {
            *lower_bound(dp,dp+cnt,a)=a;
        }
    }
    return cnt;
}

int main()
{
    int n;
    int a[1100],b[1100],c[1100],ans=0;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    {
        double x;
        scanf("%lf",&x);
        a=x*100000;
    }
    for(int i=0;i<n-1;i++)
    {
        for(int j=0;j<=i;j++)
            b[j]=a[j];
        for(int j=n-1;j>i;j--)
            c[n-1-j]=a[j];
        ans=max(getLIS(b,i+1)+getLIS(c,n-i-1),ans);
    }
    printf("%d\n",n-ans);
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 1836 Alignment的更多相关文章

  1. poj 1836 Alignment(dp)

    题目:http://poj.org/problem?id=1836 题意:最长上升子序列问题, 站队,求踢出最少的人数后,使得队列里的人都能看到 左边的无穷远处 或者 右边的无穷远处. 代码O(n^2 ...

  2. POJ 1836 Alignment 水DP

    题目: http://poj.org/problem?id=1836 没读懂题,以为身高不能有相同的,没想到排中间的两个身高是可以相同的.. #include <stdio.h> #inc ...

  3. poj 1836 Alignment(线性dp)

    题目链接:http://poj.org/problem?id=1836 思路分析:假设数组为A[0, 1, …, n],求在数组中最少去掉几个数字,构成的新数组B[0, 1, …, m]满足条件B[0 ...

  4. POJ 1836 Alignment (双向DP)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10804   Accepted: 3464 Descri ...

  5. POJ 1836 Alignment(DP max(最长上升子序列 + 最长下降子序列))

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14486   Accepted: 4695 Descri ...

  6. POJ 1836 Alignment 最长递增子序列(LIS)的变形

    大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...

  7. POJ 1836 Alignment --LIS&LDS

    题意:n个士兵站成一排,求去掉最少的人数,使剩下的这排士兵的身高形成“峰形”分布,即求前面部分的LIS加上后面部分的LDS的最大值. 做法:分别求出LIS和LDS,枚举中点,求LIS+LDS的最大值. ...

  8. POJ - 1836 Alignment (动态规划)

    https://vjudge.net/problem/POJ-1836 题意 求最少删除的数,使序列中任意一个位置的数的某一边都是递减的. 分析 任意一个位置的数的某一边都是递减的,就是说对于数h[i ...

  9. poj 1836 LIS变形

    题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submiss ...

随机推荐

  1. Jenkins进阶系列之——12详解Jenkins节点配置

    2014-03-02:修正对于lable标签的理解.(1.532.1版本已经给出了官方解释) 2013-12-22:添加JNLP端口修改,修改了一些错误. Jenkins有个很强大的功能:分布式构建( ...

  2. python selenuim使用代理的方式

    一.FireFox浏览器 myProxy = "60.195.250.55:80" proxy = Proxy({ 'proxyType': ProxyType.MANUAL, ' ...

  3. [bzoj1296][SCOI2009]粉刷匠(泛化背包)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...

  4. 编写高质量代码改善C#程序的157个建议[避免finaly内的无效代码、避免嵌套异常、避免吃掉异常、注意循环异常处理]

    前言 本文已同步到http://www.cnblogs.com/aehyok/p/3624579.html.本文主要来学习以下几点建议 建议61.避免在finally内撰写无效代码 建议62.避免嵌套 ...

  5. 1、面向对象以及winform的简单运用(开篇)

    面向对象概述: 要学习好面向对象,我们应该从三个问题入手: 1.什么是面向对象? 2.为什么要面向对象? 3.该怎么面向对象? 面向对象,首先要有一个对象,那么对象是什么呢? 对象的定义是人们要进行研 ...

  6. 每天一个linux命令(47):traceroute命令

    通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一 ...

  7. Sublime Text 3 Build 3065 All System CracKed By Hmily[LCG]

    Sublime Text 3 Build 3065 All System CracKed By Hmily[LCG] <ignore_js_op> 程序员文本编辑器 Sublime Tex ...

  8. [转]Java总结篇系列:Java泛型

    一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...

  9. Kettle_设置变量的两种方法

    一个复杂的kettle作业一般包括很多子作业和转换,在主作业Start后通常会添加一个[设置变量]的流程,该流程的功能是为所有流程的公共变量设置通用值.       主作业添加的[设置变量]针对的是所 ...

  10. 用php生成数据字典

    <?php header("Content-type: text/html; charset=utf-8"); $dbserver = "localhost&quo ...