题目链接

题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?

题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0到m-1,第i只青蛙只能走到gcd(ai, m)的位置,我们就可以把m的因子提取出来,然后对青蛙能走到的因子位置打标记。两个数组,第一个数组a代表是否能走到该因子,第二个数组b表示是否已经加过了,加过了几次,遍历到那个因子的时候要加上(a[i]-b[i])倍的数,这个数很可能是负数。至于公式利用等差数列前n项和可以得出。

注意这道题是因子分解而不是素因子分解,因为对于12来说2和4是不一样的。

注意这道题不是对数进行操作而是对因子进行操作。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
const int maxn=1e5+;
ll cnt=,prime[maxn];
void solve(ll m)
{
cnt=;//注意初始化
prime[cnt++]=;
for(int i=; i<sqrt(m); i++)
{
if(m%i==)
{
prime[cnt++]=i;
prime[cnt++]=m/i;
}
}
ll tmp=sqrt(m);
if(tmp*tmp==m)
prime[cnt++]=tmp;
sort(prime,prime+cnt);
}
int main()
{
int t,cas=;
scanf("%d",&t);
while(t--)
{
ll n,m,data,tmp;
scanf("%lld%lld",&n,&m);
memset(prime,,sizeof(prime));
solve(m);
ll a[maxn],b[maxn];
memset(a,,sizeof(a));//标记
memset(b,,sizeof(b));//算过了几次
for(int i=; i<n; i++)
{
scanf("%lld",&data);
tmp=gcd(data,m);
for(int j=; j<cnt; j++)
{
if(prime[j]%tmp==)
a[j]=;
}
}
ll ans=;
for(int i=; i<cnt; i++)
{
ll num=a[i]-b[i];
if(num!=)
{
ll tmp=(m-)/prime[i];
ans=ans+tmp*(tmp+)/*prime[i]*num;
for(int j=i; j<cnt; j++)
{
if(prime[j]%prime[i]==)
b[j]=b[j]+num; //注意是b表示数目
}
}
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;
}

更新版:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
const int maxn=1e5+;
ll prime[maxn],a[maxn];
int cnt=;
void solve(ll m)
{
memset(a,,sizeof(a));
memset(prime,,sizeof(prime));
cnt=;
prime[cnt++]=;
for(int i=;i<sqrt(m);i++)
{
if(m%i==)
{
prime[cnt++]=i;
prime[cnt++]=m/i;
}
}
if(ll(sqrt(m))*ll(sqrt(m))==m) prime[cnt++]=ll(sqrt(m));
sort(prime,prime+cnt);
}
int main()
{
int t,cas=;
scanf("%d",&t);
while(t--)
{
ll n,m,data;
scanf("%lld%lld",&n,&m);
solve(m);
for(int i=;i<n;i++)
{
scanf("%lld",&data);
data=gcd(data,m);
for(int j=;j<cnt;j++)
if(prime[j]%data==) a[j]=;
}
ll ans=;
for(int i=;i<cnt;i++)
{
ll num=a[i];
if(num!=)
{
ll tmp=(m-)/prime[i];
ans+=tmp*(tmp+)/*prime[i]*num;
for(int j=i+;j<cnt;j++)
if(prime[j]%prime[i]==) a[j]-=num;
}
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;
}

HDU 5514 Frogs (容斥原理+因子分解)的更多相关文章

  1. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  2. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. HDU 5514 Frogs(容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5514 [题目大意] m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子, ...

  4. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  5. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

  6. HDU 5514 Frogs 欧拉函数

    题意: 有\(m(1 \leq m \leq 10^9)\)个石子排成一圈,编号分别为\(0,1,2 \cdots m-1\). 现在在\(0\)号石头上有\(n(1 \leq n \leq 10^4 ...

  7. HDU 5514 Frogs (数论容斥)

    题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计 ...

  8. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  9. HDU 5514.Frogs-欧拉函数 or 容斥原理

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. system.badimageformatexception 未能加载文件或程序集问题解决

    原因是项目CPU默认X86我的系统是X64,将目标平台改为 Any CPU就可以了; 解决方法:

  2. c++实现快排出现错误

    #include"header_file.h" using namespace std; void swap(int a,int b) { int t; t=a; a=b; b=t ...

  3. ThinkPad紧凑型蓝牙键盘(0B47189)鼠标滚轮用法,F1到F12功能键的功能切换以及其他技巧

    入手小红点蓝牙键盘(ThinkPad Compact Bluetooth),手感极佳,小红点特别适合程序员工作,双手无需离开键盘就可以操作鼠标,完全解决肩部.腕部疲劳酸痛问题,程序员健康的大福音! 使 ...

  4. 织梦DedeCMS首页调用单页文档内容的方法

    很多使用织梦dedecms单页文档功能的朋友都想知道如何在织梦首页调用单页文档的内容,下面就教大家具体的实现方法: 具体步骤如下: 首先在首页模板需要显示单页文档内容的地方插入如下代码: {dede: ...

  5. pthread clean up

    https://www.ibm.com/developerworks/cn/linux/thread/posix_threadapi/part4/ http://www.cnblogs.com/xfi ...

  6. [Redis]c# redis缓存辅助类

    public static class RedisCache { private static IRedisClient RCClient = null; /// <summary> // ...

  7. sed 指令

    sed -e 's/:/ /g' 将待处理文本行中:替换为空格, s/A/B/g 是sed中的替换命令, 将A替换为B, 其中,A可以是正则表达式. g表示全部替换. sed 指令 瀏覽數 : 6,5 ...

  8. CSS2-3常见的demo列子总结

    CSS2-3常见的demo列子总结 阅读目录 1. css超过一行或者多行后显示省略号. 2. css图片未知高度垂直居中完美解决方案. 3. 学习使用 :before和 :after伪元素 回到顶部 ...

  9. alipay iOS SDK

    我也是醉了,进支付宝主页找都找不到,好不容易找到赶紧记下来:https://b.alipay.com/order/productDetail.htm?productId=201308060460965 ...

  10. google推出的SwipeRefreshLayout下拉刷新用法

    使用如下: 1.先下载android-support-v4.jar最新版本,之前的版本是没有SwipeRefreshLayout下拉刷新控件的,如果已经更新,此步骤可省略. 2.在xml文件中引用an ...