【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)
http://www.lydsy.com/JudgeOnline/problem.php?id=1901
首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊。
bzoj提交是wa!!T_T,将数组改大就acT_T
吐槽完毕。
这题之前做过,用树套树做的,但是时间感人(http://www.cnblogs.com/iwtwiioi/p/3870597.html)
鉴于我是蒟蒻,所以我根本不会做啊!!
学习,,,
恩。。。
这题用树状数组来维护区间,写过树状数组套树的都应该会。和我之前的做法一样。
但是统计的话, 要多一步骤,就是将所有区间的主席树放进一个池子里面,然后才比较。
你懂得。
但是本题的重点不在这啊!!!
我也理解了很久。至于前面说的,本来就会了额。
离散化。。。很hentai。
我们首先要将所有的值都统计起来,因为主席树是离线的啊啊啊啊啊。。
然后用原来的方法离散确定区间。
然后询问没问题,另一个就是更新了。
不更新的主席树我们都会。更新的主席树照样很简单。
我们只要将原来的点删了,然后再补上。是不是很神奇啊。一点都不神奇,噗。
将原来点删了就是size-1。
然后你懂的。
一些东西写在代码里吧:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
#define lowbit(x) (x&-x)
#define read(x) x=getint()
#define rep(i, n) for(int i=0; i<n; ++i)
#define for1(i, a, n) for(int i=a; i<=(n); ++i)
#define MID (l+r)>>1
inline const int getint() { char c=getchar(); int k=1, r=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
const int N=10005;
struct ND { int l, r, s; } t[N*200];
int tot, n, m, a[N], root[N], R[N], L[N], ans[N+N], cl, cr, cnt, QL[N], QR[N], K[N], num;
bool ask[N];
void update(const int &l, const int &r, int &pos, const int &key, const int &siz) {
t[++tot]=t[pos]; t[tot].s+=siz; pos=tot;
if(l==r) return;
int m=MID;
if(key<=m) update(l, m, t[pos].l, key, siz); else update(m+1, r, t[pos].r, key, siz);
}
inline void change(int x, const int &key, const int &siz) { for(; x<=n; x+=lowbit(x)) update(1, num, root[x], key, siz); }
int query(const int &l, const int &r, const int &k) {
if(l==r) return l;
int suml=0, sumr=0;
for1(i, 1, cl) suml+=t[t[L[i]].l].s;
for1(i, 1, cr) sumr+=t[t[R[i]].l].s;
int s=sumr-suml, m=MID;
if(k<=s) {
for1(i, 1, cl) L[i]=t[L[i]].l;
for1(i, 1, cr) R[i]=t[R[i]].l;
return query(l, m, k);
}
else {
for1(i, 1, cl) L[i]=t[L[i]].r;
for1(i, 1, cr) R[i]=t[R[i]].r;
return query(m+1, r, k-s);
}
}
inline int getans(int l, int r, const int &k) {
for(cl=0; l>0; l-=lowbit(l)) L[++cl]=root[l];
for(cr=0; r>0; r-=lowbit(r)) R[++cr]=root[r];
return query(1, num, k);
}
int main() {
read(n); read(m); char c;
for1(i, 1, n) read(a[i]), ans[++cnt]=a[i];
for1(i, 1, m) {
for(c=getchar(); c<'A'||c>'Z'; c=getchar());
read(QL[i]); read(QR[i]);
if(c=='Q') read(K[i]), ask[i]=1;
else ans[++cnt]=QR[i];
}
sort(ans+1, ans+1+cnt); //咱们先离散,在这里用不着再开个域id了
ans[cnt+1]=1000000013;
for1(i, 1, cnt) if(ans[i]!=ans[i+1]) ans[++num]=ans[i]; //将重复的累起来,缩小主席树的区间
for1(i, 1, n) a[i]=lower_bound(ans+1, ans+1+num, a[i])-ans; //查找原来数据在新数据的位置,这里可以直接覆盖了
for1(i, 1, n) change(i, a[i], 1);
for1(i, 1, m) {
if(ask[i]) printf("%d\n", ans[getans(QL[i]-1, QR[i], K[i])]);
else {
change(QL[i], a[QL[i]], -1); //先将原来的剪掉
a[QL[i]]=lower_bound(ans+1, ans+1+num, QR[i])-ans; //改变位置
change(QL[i], a[QL[i]], 1); //再将新的加上
}
} return 0;
}
Description
给定一个含有n个数的序列 a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k 小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序, 从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。 第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示 a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。
Input
对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。
Output
Sample Input
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
Sample Output
6
HINT
20%的数据中,m,n≤100; 40%的数据中,m,n≤1000; 100%的数据中,m,n≤10000。
Source
【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)的更多相关文章
- BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树
[题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...
- ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解
题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...
- P2617 Dynamic Rankings(树状数组套主席树)
P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...
- LUOGU P2617 Dynamic Rankings(树状数组套主席树)
传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树
[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...
- BZOJ 2141 排队(树状数组套主席树)
解法很多的题,可以块套树状数组,可以线段树套平衡树.我用的是树状数组套主席树. 题意:给出一段数列,m次操作,每次操作是交换两个位置的数,求每次操作后的逆序对数.(n,m<=2e4). 对于没有 ...
- BZOJ.1901.Dynamic Rankings(树状数组套主席树(动态主席树))
题目链接 BZOJ 洛谷 区间第k小,我们可以想到主席树.然而这是静态的,怎么支持修改? 静态的主席树是利用前缀和+差分来求解的,那么对于每个位置上的每棵树看做一个点,拿树状数组更新. 还是树状数组的 ...
- BZOJ1901 - Dynamic Rankings(树状数组套主席树)
题目大意 给定一个有N个数字的序列,然后又m个指令,指令种类只有两种,形式如下: Q l r k 要求你查询区间[l,r]第k小的数是哪个 C i t 要求你把第i个数修改为t 题解 动态的区间第k ...
- BZOJ 1901: Zju2112 Dynamic Rankings 区间k大 带修改 在线 线段树套平衡树
之前写线段树套splay数组版..写了6.2k..然后弃疗了.现在发现还是很水的..嘎嘎.. zju过不了,超时. upd:才发现zju是多组数据..TLE一版才发现.然后改了,MLE...手写内存池 ...
随机推荐
- PHP session的实现原理
PHP SESSION原理 我们知道,session是在服务器端保持用户会话数据的一种方法,对应的cookie是在客户端保持用户数据.HTTP协议是一种无状态协议,服务器响应完之后就失去了与浏览器的联 ...
- PHP--TP框架----操作数据库
//操作数据库 //$attr = $m->select(); //查询所有数据 //$attr = $m->s ...
- HDU 5510 Bazinga (字符串匹配)
题目:传送门. 题意:t 组数据,每组 n 个串,对于第 i 个串如果存在 1 到 i-1 中的某个串不是 i 的子串,那么这个第 i 个串符合题意,求 i 的最大值. 题解:KMP,AC自动机也可以 ...
- HDU1297 Children’s Queue (高精度+递推)
Children’s Queue Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 4059 容斥原理+快速幂+逆元
E - The Boss on Mars Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- July 27th, Week 31st Wednesday, 2016
Don't let yesterday take up too much of today. 别让昨天的事情占据今天太多时间. Learn from yesterday, but don't let ...
- July 19th, Week 30th Tuesday, 2016
The good seaman is known in bad weather. 惊涛骇浪,方显英雄本色. You can't be afraid to fail. It's the only way ...
- Genesis自动登录方法(免输入用户名和密码)
第一步:点击“我的电脑”右键属性在“高级”里面的“环境变量”里面把“系统变量”照下图所示新建(XP和WIN7的环境变量设置方法类似): 变量名:FRONTLINE_NO_LOGIN_SCREEN 变量 ...
- Android 图标添加消息提醒
实现方法: 1. 在对应的布局放置TextView或者ImageView. 2. 用Canvas在原来Icon的bitmap基础上进行绘制 3. 利用开源项目ViewBadger进行添加,很方便,而且 ...
- pyinstaller--将py文件转化成exe
首先要注意一下:打包python文件成exe格式这个过程只能在windows环境下运行 1. 直接在命令行用pip安装 pyinstaller pip install pyinstaller</ ...