HIVE: Map Join Vs Common Join, and SMB
HIVE
Map Join is nothing but the extended version of Hash Join of SQL Server - just extending Hash Join into Distributed System.
SMB(Sort Merge Bucket) Join is also similar to the SQL Server Merge Join mechnism - just extending it into Distributed System.
If the tables being joined are bucketized, and the buckets are a multiple of each other, the buckets can be joined with each other. If table A has 8 buckets are table B has 4 buckets, the following join:
can be done on the mapper only. Instead of fetching B completely for each mapper of A, only the required buckets are fetched. For the query above, the mapper processing bucket 1 for A will only fetch bucket 1 of B. It is not the default behavior, and is governed by the following parameter
set hive.optimize.bucketmapjoin = true
If the tables being joined are sorted and bucketized, and the number of buckets are same, a sort-merge join can be performed. The corresponding buckets are joined with each other at the mapper. If both A and B have 4 buckets
can be done on the mapper only. The mapper for the bucket for A will traverse the corresponding bucket for B. This is not the default behavior, and the following parameters need to be set:
下面进行一次简单的性能比较测试.
表结构:
hive> desc student;
OK
no double
name string
code string
Time taken: 0.568 seconds, Fetched: row(s)
hive> desc stu_add;
OK
add_code double
address string
Time taken: 0.093 seconds, Fetched: row(s)
表student大小,约470M
-rwxr-xr-x stevenxia supergroup -- : /user/hive/warehouse/student/part-m-00000_copy_7
表stu_add小大约 1K
Found items
-rwxr-xr-x stevenxia supergroup -- : /user/hive/warehouse/stu_add/part-m-
运行
select s.name, a.address from student s join stu_add a on s.no = a.add_code;
进行了多次测试,结果:
| 序号 | set hive.auto.convert.join = false; | set hive.auto.convert.join = true; |
| 1 | 2m 1s | 35s |
| 2 | 2m 9s | 33s |
| 3 | 2m 1s | 33s |
WHY?
我想主要Common Join有两点性能消耗比较多:
a. Shuffle过程,需要把各个mapper的结果写到磁盘
b. 需要把map task的结果复制到其它data node上进行reduce
这是我的理解,如有错误,不吝赐教。
reduce side join是一种最简单的join方式,其主要思想如下:
在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。
在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。
之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。
Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。
为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:
(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。
reduce side join + BloomFilter
将小表中的key保存到BloomFilter中,在map阶段扫描过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已.
Semi Join,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO.
实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。
Sort Merge Bucket Join 存在的目的主要是为了解决大表与大表间的 Join 问题,分桶其实就是把大表化成了“小表”,然后 Map-Side Join 解决之,这是典型的分而治之的思想。
连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量.
set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;
set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;
HIVE: Map Join Vs Common Join, and SMB的更多相关文章
- Hive中的4种Join方式
common join 普通join,性能较差,存在Shuffle map join 适用情况:大表join小表时,做不等值join 原理:将小表数据广播到各个节点,存储在内存中,在map阶段直接jo ...
- 061 hive中的三种join与数据倾斜
一:hive中的三种join 1.map join 应用场景:小表join大表 一:设置mapjoin的方式: )如果有一张表是小表,小表将自动执行map join. 默认是true. <pro ...
- Hive Essential (4):DML-project,filter,join,union
1. Project data with SELECT The most common use case for Hive is to query data in Hadoop. To achieve ...
- Hive 中的 LEFT SEMI JOIN 与 JOIN ON
hive 的 join 类型有好几种,其实都是把 MR 中的几种方式都封装实现了,其中 join on.left semi join 算是里边具有代表性,且使用频率较高的 join 方式. 1.联系 ...
- Hive 中Join的专题---Join详解
1.什么是等值连接? 2.hive转换多表join时,如果每个表在join字句中,使用的都是同一个列,该如何处理? 3.LEFT,RIGHT,FULL OUTER连接的作用是什么? 4.LEFT或RI ...
- HIVE中join、semi join、outer join
补充说明 left outer join where is not null与left semi join的联系与区别:两者均可实现exists in操作,不同的是,前者允许右表的字段在select或 ...
- 关于Hive中的join和left join的理解
一.join与left join的全称 JOIN是INNER JOIN的简写,LEFT JOIN是LEFT OUTER JOIN的简写. 二.join与left join的应用场景 JOIN一般用于A ...
- flink-----实时项目---day06-------1. 获取窗口迟到的数据 2.双流join(inner join和left join(有点小问题)) 3 订单Join案例(订单数据接入到kafka,订单数据的join实现,订单数据和迟到数据join的实现)
1. 获取窗口迟到的数据 主要流程就是给迟到的数据打上标签,然后使用相应窗口流的实例调用sideOutputLateData(lateDataTag),从而获得窗口迟到的数据,进而进行相关的计算,具体 ...
- SQL Left Join, Right Join, Inner Join, and Natural Join 各种Join小结
在SQL语言中,存在着各种Join,有Left Join, Right Join, Inner Join, and Natural Join等,对于初学者来说肯定一头雾水,都是神马跟神马啊,它们之间到 ...
随机推荐
- [读书笔记]C#学习笔记二: 委托和事件的用法及不同.
前言: C#委托是什么 c#中的委托可以理解为函数的一个包装, 它使得C#中的函数可以作为参数来被传递, 这在作用上相当于C++中的函数指针. C++用函数指针获取函数的入口地址, 然后通过这个指针 ...
- 文件上传小技巧/后端处理【以php示例】
引语:在上一篇文章中说到,在页面中可以用隐藏的方式让你的上传页面看起来漂亮.但是这对于性能来说,并没有什么卵用,那么在后台的处理中,难道就没有一些处理技巧么?所谓后台的技巧,应该要包括上传得快一点,上 ...
- IOS开发-图片尺寸
在这篇文章当中,不会讲述关于具体px pt,分辨率,像素的问题,在这篇文章中,只会谈及到一些展现的问题 如果想了解更多关于pt,px之间的关系可以自行到百度查找相关的答案,或者到以下地址阅读更多相关的 ...
- 从零开始学Bootstrap(1)
最近需要做一个简单的Web页面. 考虑到前端经验不足,为了快速产出,同时项目只是一个工具,对项目没有什么要求,所以我选择了Bootstrap这个框架作为Web框架. 写从零开始学Bootstrap的初 ...
- JQ例子:旋转木马
使用JQ现实旋转木马超级简单,它看起来很复杂,动画好像很难实现,但其实不然. 效果图: <!DOCTYPE html> <html lang="en"> & ...
- bind() live()和delegate 区别
Event bubbling (aka event propagation)冒泡 我们的页面可以理解为一棵DOM树,当我们在叶子结点上做什么事情的时候(如click一个a元素),如果我们不人为的设置s ...
- VS2015安装 Secondary Installer Setup Failed求解决方案
个人同步本文博客地址http://aehyok.com/Blog/Detail/64.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章 ...
- 493萬Gmail用戶的賬號密碼遭洩露,Google否認自己存在安全漏洞
最近,大公司在互聯網信息安全問題上狀況頻出.上週,蘋果因iCloud被黑客攻擊而導致大量明星私照外洩,著實是熱鬧了一陣.而Google也來湊熱鬧了.據俄羅斯媒體CNews消息,近493萬Gmail用戶 ...
- [1].jekyll扫盲
一.jekyll是什么? jekyll是一款免费的blog生成工具,将纯文本(plain text)转换为静态网站或博客. Jekyll是一个使用Ruby编写的静态站点生成工具,使用Liquid模板渲 ...
- 使用Gulp和Browserify创建多个绑定文件
Browserify是一个Javascript的绑定工具,帮助我们理顺module之间的依赖关系.Gulp用来优化workflow.两者的共同点都是使用流,但在使用流方面也有不同之处: Browser ...