莫比乌斯反演得

$ans=\sum g[i]\frac{a}{i}\frac{b}{i}$

其中$g[i]=\sum_{j|i}f[j]\mu(\frac{i}{j})$

由f和miu的性质可得

设$n=p[1]^{a[1]}p[2]^{a[2]}...p[k]^{a[k]}$

若存在$a[i]$不等于$a[j]$,则$g[n]=0$

否则$g[n]=(-1)^{k+1}$

线性筛$O(n)$预处理,然后每次询问$O(\sqrt{n})$分块计算

#include<cstdio>
typedef long long ll;
const int N=10000001;
int T,n,m,i,j,p[N],tot,g[N],a[N],w[N];bool v[N];ll ans;
inline int min(int a,int b){return a<b?a:b;}
int main(){
for(i=2;i<N;i++){
if(!v[i])p[++tot]=i,g[i]=a[i]=1,w[i]=i;
for(j=1;j<=tot;j++){
if(i*p[j]>=N)break;
v[i*p[j]]=1;
if(i%p[j]){
a[i*p[j]]=1,w[i*p[j]]=p[j];
if(a[i]==1)g[i*p[j]]=-g[i];
}else{
a[i*p[j]]=a[i]+1,w[i*p[j]]=w[i]*p[j],n=i/w[i];
if(n==1)g[i*p[j]]=1;else g[i*p[j]]=a[n]==a[i*p[j]]?-g[n]:0;
break;
}
}
}
for(i=2;i<N;i++)g[i]+=g[i-1];
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(ans=0,i=1;i<=n&&i<=m;i=j+1)j=min(n/(n/i),m/(m/i)),ans+=(ll)(g[j]-g[i-1])*(n/i)*(m/i);
printf("%lld\n",ans);
}
return 0;
}

  

BZOJ3309 : DZY Loves Math的更多相关文章

  1. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  2. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  3. bzoj2154||洛谷P1829 Crash的数字表格&&JZPTAB && bzoj3309 DZY Loves Math

    bzoj2154||洛谷P1829 https://www.lydsy.com/JudgeOnline/problem.php?id=2154 https://www.luogu.org/proble ...

  4. 【莫比乌斯反演】BZOJ3309 DZY Loves Math

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  5. BZOJ3309 DZY Loves Math 【莫比乌斯反演】

    题目 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(si ...

  6. DZY Loves Math系列

    link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...

  7. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  8. 【BZOJ3309】DZY Loves Math 解题报告

    [BZOJ3309]DZY Loves Math Description 对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数.例如\(f(1960)=f(2^3×5^1×7^ ...

  9. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

随机推荐

  1. Coursera台大机器学习课程笔记15 -- Three Learning Principles

    这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致 ...

  2. facedetect

    继续学习大神的博文http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html

  3. django-cms 代码研究(一)djangocms是什么

    首先用djangocms生成了一个站点(具体参考这里:http://www.cnblogs.com/Tommy-Yu/p/3878488.html),其文件结构如下: 本来以为会很有逼格,结果一看傻眼 ...

  4. linux awk 内置函数详细介绍(实例)

    这节详细介绍awk内置函数,主要分以下3种类似:算数函数.字符串函数.其它一般函数.时间函数 一.算术函数: 以下算术函数执行与 C 语言中名称相同的子例程相同的操作: 函数名 说明 atan2( y ...

  5. .html和.htm的区别

    很多人会认为网页扩展名html和htm是等同的,但事实上他们还是有区别的. 包含HTML内容的文件最常用的扩展名是.html,但是像DOS这样的旧操作系统限制扩展名为最多3个字符,所以.htm扩展名也 ...

  6. 【leetcode】Best Time to Buy and Sell Stock II

    Best Time to Buy and Sell Stock II Say you have an array for which the ith element is the price of a ...

  7. Eclipse 项目红色叹号:Build Path Problem

    Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...

  8. Java for LeetCode 075 Sort Colors

    Given an array with n objects colored red, white or blue, sort them so that objects of the same colo ...

  9. Java for LeetCode 034 Search for a Range

    Given a sorted array of integers, find the starting and ending position of a given target value. You ...

  10. 学习Hadoop整体理解

    HDFS是Hadoop的核心模块之一,围绕HDFS是什么.HDFS的设计思想和HDFS的体系结构三方面来介绍. Hadoop的设计思想受到Google公司的GFS设计思想的启示,基于一种开源的理念实现 ...