BZOJ3309 : DZY Loves Math
莫比乌斯反演得
$ans=\sum g[i]\frac{a}{i}\frac{b}{i}$
其中$g[i]=\sum_{j|i}f[j]\mu(\frac{i}{j})$
由f和miu的性质可得
设$n=p[1]^{a[1]}p[2]^{a[2]}...p[k]^{a[k]}$
若存在$a[i]$不等于$a[j]$,则$g[n]=0$
否则$g[n]=(-1)^{k+1}$
线性筛$O(n)$预处理,然后每次询问$O(\sqrt{n})$分块计算
#include<cstdio>
typedef long long ll;
const int N=10000001;
int T,n,m,i,j,p[N],tot,g[N],a[N],w[N];bool v[N];ll ans;
inline int min(int a,int b){return a<b?a:b;}
int main(){
for(i=2;i<N;i++){
if(!v[i])p[++tot]=i,g[i]=a[i]=1,w[i]=i;
for(j=1;j<=tot;j++){
if(i*p[j]>=N)break;
v[i*p[j]]=1;
if(i%p[j]){
a[i*p[j]]=1,w[i*p[j]]=p[j];
if(a[i]==1)g[i*p[j]]=-g[i];
}else{
a[i*p[j]]=a[i]+1,w[i*p[j]]=w[i]*p[j],n=i/w[i];
if(n==1)g[i*p[j]]=1;else g[i*p[j]]=a[n]==a[i*p[j]]?-g[n]:0;
break;
}
}
}
for(i=2;i<N;i++)g[i]+=g[i-1];
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(ans=0,i=1;i<=n&&i<=m;i=j+1)j=min(n/(n/i),m/(m/i)),ans+=(ll)(g[j]-g[i-1])*(n/i)*(m/i);
printf("%lld\n",ans);
}
return 0;
}
BZOJ3309 : DZY Loves Math的更多相关文章
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)
$\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...
- bzoj2154||洛谷P1829 Crash的数字表格&&JZPTAB && bzoj3309 DZY Loves Math
bzoj2154||洛谷P1829 https://www.lydsy.com/JudgeOnline/problem.php?id=2154 https://www.luogu.org/proble ...
- 【莫比乌斯反演】BZOJ3309 DZY Loves Math
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- BZOJ3309 DZY Loves Math 【莫比乌斯反演】
题目 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(si ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- 【BZOJ3309】DZY Loves Math 解题报告
[BZOJ3309]DZY Loves Math Description 对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数.例如\(f(1960)=f(2^3×5^1×7^ ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
随机推荐
- mysql.msi安装流程
Mysql For Windows安装图解 演示安装版本:mysql-5.5.20-win32.msi(目前是mysql for windows的最新版)安装环境:Windows Server 200 ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- apache virtualhost配置 apache配置多个网站
第一步 apache下httpd.conf文件 启用模块LoadModule vhost_alias_module modules/mod_vhost_alias.so 第二步 apache下http ...
- poj1182(食物链)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 49320 Accepted: 14385 Description ...
- Jump Game | & ||
Jump Game | Given an array of non-negative integers, you are initially positioned at the first index ...
- C++纯虚函数
本文较为深入的分析了C++中虚函数与纯虚函数的用法,对于学习和掌握面向对象程序设计来说是至关重要的.具体内容如下: 首先,面向对象程序设计(object-oriented programming)的核 ...
- PHP 调试用函数
2014年7月4日 10:27:59 有些系统函数可以在调试程序时救急用: get_class_methods(); get_class_vars(); get_object_vars(); get_ ...
- DP:Cow Bowling(POJ 3176)
北大教你怎么打保龄球 题目很简单的,我就不翻译了,简单来说就是储存每一行的总数,类似于状态压缩 #include <stdio.h> #include <stdlib.h> # ...
- PHP--TP框架----操作数据库
//操作数据库 //$attr = $m->select(); //查询所有数据 //$attr = $m->s ...
- IE的浏览器模式和文档模式
只有IE浏览器中才会有“浏览器模式”和“文档模式”,兼容性视图涉及两个重要的功能 便是“浏览器模式[browser mode]”和“文档模式[document mode]”,在IE8/IE9中按F12 ...