Theano下用CNN(卷积神经网络)做车牌中文字符OCR

原文地址:http://m.blog.csdn.net/article/details?id=50989742

之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程

用了他的代码在theano下测试了下中文车牌字符的识别。由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了。

一共 31 类 车牌中文字符数据来源于中文车牌识别项目 EasyPR 的数据集 . 由于数据集分布很不均匀。可能会导致个别类别拟合不一致,而降低识别率。所以使用随机轻微扭曲图像的方式来生成新的数据以保证数据集各个类目的数量的均衡。

下面是用于轻微扭曲图像来生成更多样本的函数。

def rotRandrom(img,factor,size):
""" 使图像轻微的畸变 img 输入图像
factor 畸变的参数
size 为图片的目标尺寸 """
img = img.reshape(size);
shape = size; pts1 = np.float32([[0,0],[0,shape[0]],[shape[1],0],[shape[1],shape[0]]])
pts2 = np.float32([[r(factor),r(factor)],[0,shape[0]-r(factor)],[shape[1]-r(factor),0],[shape[1]-r(factor),shape[0]-r(factor)]])
M = cv2.getPerspectiveTransform(pts1,pts2);
dst = cv2.warpPerspective(img,M,(shape[0],shape[1]));
return dst.ravel();

在训练的时候 使用的CNN结构如下

激活函数都为 ReLu

Conv(kernel size 5*5 ) * 25个 feature map->

Pooling 2*2  ->

Conv(kernel size 5*5) * 16个feature map->

Pooling 2*2 ->

FullConnectedLayer 120 个 Neurons ->

FullConnectedLayer 84个 Neurons ->

Softmax Output 31类

import network3
from network3 import Network
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
from network3 import ReLU training_data, validation_data, test_data= network3.load_data_cPickle("./data.pkl")
mini_batch_size = 10
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(25, 1, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
ConvPoolLayer(image_shape=(mini_batch_size, 25, 12, 12),
filter_shape=(16, 25, 5, 5),
poolsize=(2, 2),
activation_fn=ReLU),
FullyConnectedLayer(n_in=16*4*4, n_out=120, activation_fn=ReLU),
FullyConnectedLayer(n_in=120, n_out=84, activation_fn=ReLU),
SoftmaxLayer(n_in=84, n_out=31)], mini_batch_size )
net.SGD(training_data, 60, mini_batch_size, 0.03, validation_data, test_data, lmbda=0.1)

这个函数用于制作自己的数据。

def make_dataset(dirn):
set = [];
labels = [] ; def findinside(dirname,code,):
print "code",code;
print "dirname",dirname; for parent,dirnames,filenames in os.walk(dirname):
adder = 1400 - len(filenames)
len_d = len(filenames)
for filename in filenames:
path =parent+"/"+filename
if(path.endswith(".jpg")):
img = cv2.imread(path,cv2.CV_LOAD_IMAGE_GRAYSCALE);
img = cv2.resize(img,(28,28));
img = img.astype(np.float32)/255; set.append(img.ravel());
labels.append(code);
for i in range(adder):
c_index = int(np.random.rand() * len_d);
l_set = len(set)
set.append(rotrandom.rotRandrom( set[l_set-len_d + c_index],0.88,(28,28))); labels.append(code); print len(set),dirname,len(filenames) for parent,dirnames,filenames in os.walk(dirn):
num = len(dirnames);
for i in range(num):
c_path = dir_chars + "/"+ dirnames[i];
findinside(c_path,i); shuffle = np.random.permutation(len(set)); print len(set)
set = np.array(set);
labels = np.array(labels);
set, labels = set[shuffle], labels[shuffle]
train_n = int(0.9*len(set)) training_set,test_set = np.split(set, [train_n])
training_labels, test_labels = np.split(labels, [train_n])
print training_labels
validation_set = test_set.copy();
validation_labels = test_set.copy();
training_data = [training_set,training_labels]
validation_data = [validation_set,validation_labels] test_data = [test_set,test_labels] data = [ training_data, validation_data, test_data];
fileid = open("./data.pkl","wb")
cPickle.dump(data,fileid) dir_chars = "./charsChinese"
make_dataset(dir_chars);

在进行了第14个epoch之后获得了 98.41% 训练时间大概在10分钟左右。

Training mini-batch number 0
Training mini-batch number 1000
Training mini-batch number 2000
Training mini-batch number 3000
Epoch 0: validation accuracy 89.15%
This is the best validation accuracy to date.
The corresponding test accuracy is 89.15%
Training mini-batch number 4000
Training mini-batch number 5000
Training mini-batch number 6000
Training mini-batch number 7000
Epoch 1: validation accuracy 94.65%
This is the best validation accuracy to date.
The corresponding test accuracy is 94.65%
Training mini-batch number 8000
Training mini-batch number 9000
Training mini-batch number 10000
Training mini-batch number 11000
Epoch 2: validation accuracy 95.44%
This is the best validation accuracy to date.
The corresponding test accuracy is 95.44%
Training mini-batch number 12000
Training mini-batch number 13000
Training mini-batch number 14000
Training mini-batch number 15000
Epoch 3: validation accuracy 96.13%
This is the best validation accuracy to date.
The corresponding test accuracy is 96.13%
Training mini-batch number 16000
Training mini-batch number 17000
Training mini-batch number 18000
Training mini-batch number 19000
Epoch 4: validation accuracy 96.91%
This is the best validation accuracy to date.
The corresponding test accuracy is 96.91%
Training mini-batch number 20000
Training mini-batch number 21000
Training mini-batch number 22000
Training mini-batch number 23000
Epoch 5: validation accuracy 96.52%
Training mini-batch number 24000
Training mini-batch number 25000
Training mini-batch number 26000
Training mini-batch number 27000
Epoch 6: validation accuracy 96.87%
Training mini-batch number 28000
Training mini-batch number 29000
Training mini-batch number 30000
Training mini-batch number 31000
Epoch 7: validation accuracy 96.87%
Training mini-batch number 32000
Training mini-batch number 33000
Training mini-batch number 34000
Training mini-batch number 35000
Epoch 8: validation accuracy 97.58%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.58%
Training mini-batch number 36000
Training mini-batch number 37000
Training mini-batch number 38000
Training mini-batch number 39000
Epoch 9: validation accuracy 97.49%
Training mini-batch number 40000
Training mini-batch number 41000
Training mini-batch number 42000
Epoch 10: validation accuracy 97.60%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.60%
Training mini-batch number 43000
Training mini-batch number 44000
Training mini-batch number 45000
Training mini-batch number 46000
Epoch 11: validation accuracy 97.93%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.93%
Training mini-batch number 47000
Training mini-batch number 48000
Training mini-batch number 49000
Training mini-batch number 50000
Epoch 12: validation accuracy 97.83%
Training mini-batch number 51000
Training mini-batch number 52000
Training mini-batch number 53000
Training mini-batch number 54000
Epoch 13: validation accuracy 98.04%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.04%
Training mini-batch number 55000
Training mini-batch number 56000
Training mini-batch number 57000
Training mini-batch number 58000
Epoch 14: validation accuracy 98.20%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.20%
Training mini-batch number 59000
Training mini-batch number 60000
Training mini-batch number 61000
Training mini-batch number 62000
Epoch 15: validation accuracy 97.86%
Training mini-batch number 63000
Training mini-batch number 64000
Training mini-batch number 65000
Training mini-batch number 66000
Epoch 16: validation accuracy 98.41%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.41%

[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR的更多相关文章

  1. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  2. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  3. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  4. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  5. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

  6. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  7. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  8. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  9. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

随机推荐

  1. ACM博弈知识汇总(转)

    博弈知识汇总 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻 ...

  2. java语句练习1

    public class Demo完数{ /* * 问题:求1000以内的完数(一个数等于除它本身之外的因数之和)及个数. * 分析:例如6=1+2+3 * 遍历语句:判断语句:计数器:1除外 */ ...

  3. Shell脚本IF条件判断和判断条件总结

    转自:http://m.jb51.net/article/56553.htm 这篇文章主要介绍了Shell脚本IF条件判断和判断条件总结,本文先是给出了IF条件判断的语法,然后给出了常用的判断条件总结 ...

  4. CGI、FastCGI和PHP-FPM浅析

    这段时间对Nginx+PHP-FPM的概念和机制一直不太清晰,趁着同事的分享和看过的几篇博文和资料,重新将思路处理一下. 首先,PHP-FPM(FastCGI Process Manager: Fas ...

  5. MVC 為頁面的list資料重新命名

    function ReBookFileName() {                              $("#div_sortable").find("li[ ...

  6. 一致性hash介绍

    像Memcache以及其它一些内存K/V数据库一样,Redis本身不提供分布式支持,所以在部署多台Redis服务器时,就需要解决如何把数据分散到各个服务器的问题,并且在服务器数量变化时,能做到最大程度 ...

  7. 使用imap协议接收邮件

    之前一直使用PHPMail类进行发送邮件,这个是一个非常强大的类,但是其实底层就是使用mail()函数来进行发送的. 但是现在公司有个需求是  写个程序需要实时的接收邮件,主要是判断邮件发出去了,并且 ...

  8. 炫酷的时钟--canvas初体验

    先啥也不说:来张效果图 我是根据:http://www.imooc.com/learn/133 这里的课程进行学习的.大大的感谢liuyubobobo老师的深入浅出的讲解!! 我在这里仅仅提供我自己的 ...

  9. objective c, protocol

    OC中协议类似于java中的接口,在多个类具有类似的方法时可以将这些方法定义到protocol中,然后各个类分别实现protocol中的各个方法. 例:有两个类Square和Circle, 定义一个p ...

  10. HDU 5410 CRB and His Birthday(完全背包变形)

    CRB and His Birthday Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...