最长递增(上升)子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增(上升)子序列。

考虑两个数a[x]和a[y],x>y且a[x]<a[y],且dp[x]=dp[y],当a[t]要选择时,到底取哪一个构成最优的呢?显然选取a[x]更有潜力,因为可能存在a[x]<a[z]<a[y],这样a[t]可以获得更优的值。在这里给我们一个启示,当dp[x]一样时,尽量选择更小的a[x].

按dp[t]=k来分类,只需保留dp[t]=k的所有a[t]中的最小值,设d[k]记录这个值,d[k]=min{a[t](dp[t]=k)}。

这时注意到d的两个特点(重要):

1. d[k]在计算过程中单调不升;

2. d数组是有序的,d[1]<d[2]<..d[n]。

利用这两个性质,可以很方便的求解:

1. 设当前已求出的最长上升子序列的长度为len(初始时为1),每次读入一个新元素x:

2. 若x>d[len],则直接加入到d的末尾,且len++;(利用性质2)

否则,在d中二分查找,找到第一个比x小的数d[k],并d[k+1]=x,在这里x<=d[k+1]一定成立(性质1,2)。

#include<stdio.h>
#include<string.h>
const int N=;
int d[N];
int bs(int a[],int l,int r,int key)
{
while(l<r)
{
int mid=((l+r)&)+(l+r)>>;
if(a[mid]<key)
l=mid;
else
r=mid-;
}
if(a[l]>=key) return l-;
return l;
}
int LIS(int a[],int n)
{
int i,tmp,len=;
d[]=a[];
for(i=;i<=n;i++)
{
if(d[len]<a[i])
tmp=++len;
else
tmp=bs(d,,len,a[i])+;
d[tmp]=a[i];
}
return len;
}
int main()
{
int a[]={-,,,,,,};
int tmp=LIS(a,);
printf("%d\n",tmp);
for(int i=;i<=tmp;i++)
printf("%d ",d[i]);
printf("\n");
return ;
}

LIS

这种算法的时间复杂度是O(nlogn),但是稍微难写了一点。下面的是O(n^2),容易编写。

 int LIS(int *a,int n)
{
int i,j,ans=-;
memset(dp,,sizeof(dp));dp[]=;
for(i=;i<=n;i++)
{
for(j=;j<i;j++)
{
if(a[i]>a[j])
{
if(dp[j]+>dp[i])
dp[i]=dp[j]+;
}
}
}
for(int i=;i<=n;i++)
if(dp[i]>ans)
ans=dp[i];
return ans;
}

参考文章:http://www.cppblog.com/mysileng/archive/2012/11/30/195841.html

最长上升子序列(LIS)模板的更多相关文章

  1. 求最长上升子序列(Lis模板)

    实现过程 定义已知序列数组为dp[]:dp[1…8]=389,207,155,300,299,170,158,65 我们定义一个序列B,然后令 i = 1 to 8 逐个考察这个序列.此外,我们用一个 ...

  2. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  3. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  4. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  5. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  6. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  7. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  8. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  9. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

随机推荐

  1. SwipeRefreshLayout下拉刷新

    1.SwipeRefreshLayout是Google在support v4 19.1版本的library更新的一个下拉刷新组件,实现刷新效果更方便. 弊端:只有下拉 //设置刷新控件圈圈的颜色 sw ...

  2. Sigleton 单例模式 的简单应用

    需求:一个简单的后台java程序,收集信息,并将信息发送到远端服务器. 实现:实现一个后台线程,实时处理发送过来的信息,并将信息发送到服务器. 技术要点: 1.单例模式 2.队列 并没有实现全部代码, ...

  3. [Tool] Windows 8.1安装SQL Server

    [Tool] Windows 8.1安装SQL Server 问题情景 因为工作的关系,需要在Windows 8.1.64Bit设备上安装SQL Server 2012.本来以为是个只要按下一步就可以 ...

  4. XStream的例子

    写个小例子,方便以后复习: 1 package com.demo; 2 3 import java.util.ArrayList; 4 import java.util.List; 5 6 impor ...

  5. Win10 FaceAPI小demo开发问题汇总

    Win10 FaceAPI小demo开发问题汇总 最近使用微软牛津计划做一个小demo,使用FaceAPI做一个小应用,实现刷脸的功能.开发的过程中用到几个问题,具体如下: Stream 与IRand ...

  6. andriod VideoView

    package com.example.yanlei.myyk; import android.media.MediaPlayer; import android.net.Uri; import an ...

  7. 对抗静态分析——so文件的加密

    [预备起~~~]最近在忙找工作的事情,笔试~面试~笔试~面试...很久没有写(pian)文(gao)章(fei).忙了一阵子之后,终于~~~到了选offer的阶段(你家公司不是牛吗,老子不接你家off ...

  8. IOS NSOperation&NSOperationQueue

    NSOperation与NSOperationQueue的基本理论如下:      1.NSOperationQueue代表一个FIFO的队列,它负责管理系统提交的多个NSOperation,NSOp ...

  9. 【原】UI随设备旋转从iOS6到iOS8的适配策略

    - (void)statusBarOrientationChange:(NSNotification *)notification { WClassAndFunctionName; UIInterfa ...

  10. oc语言常用的字符串函数

    #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { ...