一、概念
MapReduce:
"相同"的key为一组,调用一次reduce方法,方法内迭代这一组数据进行计算

块、分片、map、reduce、分组、分区之间对应关系
block > split
1:1:1个block可以切成1个分片
N:1:多个block可以以切成1个分片
1:N:1个block可以切成多个分片

split > map
1:1:一个分片只能产生一个map

map > reduce
N:1:多个Map可以对应一次reduce
N:N:多个Map可以对应多次reduce
1:1:1个Map可以对应1次reduce
1:N:1个Map可以对应多次reduce

group(key)>partition
1:1:1次分组可以对应1个分区
N:1:多个分组可以对应一个分区
N:N:多个分组可以对应多个分区
1:N? >违背了原语

partition > outputfile

MapTAsk:
(1)对于一个分片,加载到内存进行Map处理,
(2)Map业务逻辑将分片中数据处理成一个个的K,V键值对
(3)将Map输出的K,V键值对加工,生成含有分区partition的K,V,P键值对
(4)经过一段时间的处理,将生成的KVP数据放到缓存里(默认100M),然后按照分区P,键key排序,最终形成一个内部有序外部无序的100M文件
(5)将这个100M缓存输出到本地文件系统里,经过map处理完成后,最终生成一堆这样的小文件
(6)将这一堆小文件进行归并形成一个内部有序外部无序的大文件


ReduceTask:
(1)将各个节点归并后的大文件中拉取(shuffler)属于同一分区的文件
这个地方会产生网络IO,map之后的文件如果很大会影响性能,因此可以对map之后的数据进行简单统计 降低拉取文件的大小
(2)将拉过来的小文件进行归并,reduce的归并强依赖map的排序结果
(3)将合并的文件调用reduce

二、Hadoop整体协作
Hadoop 1.x
1、客户端clients先启动,计算切片清单,
2、客户端将MR jar包、切片清单、配置文件等作业资源上传HDFS;
3、客户端提交任务给Job Tracker
4、Job Tracker从HDFS获取切片清单,参考Task Tracker上的资源负载情况,规划Map、Reduce任务去到的节点
5、Task Tracker通过与Job Tracker心跳,获取属于自己的任务清单
6、Task Tracker从HDFS上获取切片清单、jar、配置,map运行map任务,Reduce运行Reduce任务,
7、Reduce任务将生成结果文件返回给HDFS
8、客户端通过HDFS下载文件 查看结果

弊端:Job Tracker有两件事:任务调度和监控整个集群资源负载,存在单点故障、负载过重、资源管理和计算调度强耦合
因此有了Hadoop 2.x的YARN

【Hadoop学习之六】MapReduce原理的更多相关文章

  1. hadoop学习(七)----mapReduce原理以及操作过程

    前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分 ...

  2. hadoop笔记之MapReduce原理

    MapReduce原理 MapReduce原理 简单来说就是,一个大任务分成多个小的子任务(map),并行执行后,合并结果(reduce). 例子: 100GB的网站访问日志文件,找出访问次数最多的I ...

  3. [Hadoop]浅谈MapReduce原理及执行流程

    MapReduce MapReduce原理非常重要,hive与spark都是基于MR原理 MapReduce采用多进程,方便对每个任务资源控制和调配,但是进程消耗更多的启动时间,因此MR时效性不高.适 ...

  4. Hadoop学习笔记—MapReduce的理解

    我不喜欢照搬书上的东西,我觉得那样写个blog没多大意义,不如直接把那本书那一页告诉大家,来得省事.我喜欢将我自己的理解.所以我会说说我对于Hadoop对大量数据进行处理的理解.如果有理解不对欢迎批评 ...

  5. Hadoop学习之Mapreduce执行过程详解

    一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...

  6. 【尚学堂·Hadoop学习】MapReduce案例2--好友推荐

    案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive ...

  7. 【尚学堂·Hadoop学习】MapReduce案例1--天气

    案例描述 找出每个月气温最高的2天 数据集 -- :: 34c -- :: 38c -- :: 36c -- :: 32c -- :: 37c -- :: 23c -- :: 41c -- :: 27 ...

  8. hadoop学习day3 mapreduce笔记

    1.对于要处理的文件集合会根据设定大小将文件分块,每个文件分成多块,不是把所有文件合并再根据大小分块,每个文件的最后一块都可能比设定的大小要小 块大小128m a.txt 120m 1个块 b.txt ...

  9. Hadoop学习(3)-mapreduce快速入门加yarn的安装

    mapreduce是一个运算框架,让多台机器进行并行进行运算, 他把所有的计算都分为两个阶段,一个是map阶段,一个是reduce阶段 map阶段:读取hdfs中的文件,分给多个机器上的maptask ...

随机推荐

  1. vue中封装一个全局的弹窗js

    /** * Created by yx on 2017/12/21. */ export default { /** * 带按钮的弹框 * <!--自定义提示标题,内容,单个按钮事件--> ...

  2. net use共享文件访问

    NET USE "\\xxx.xxx.xxx.xxx\vms\Application Files" "password123" /USER:"ap\1 ...

  3. 6个laravel常用目录路径函数

    public_path() public_path函数返回public目录的绝对路径:$path = public_path(); base_path() base_path函数返回项目根目录的绝对路 ...

  4. python如何使用request爬取图片

    下面是代码的简单实现,变量名和方法都是跑起来就行,没有整理,有需要的可以自己整理下: image2local: import requests import time from lxml import ...

  5. os.path.join路径拼接

    #import os print("0:", os.path.join('/aaa', 'bbb', 'ccc.txt')) #0: /aaa\bbb\ccc.txt 多数这种用法 ...

  6. spring boot 使用视图modelandview

    1:springboot使用视图解析器,添加依赖 <!-- freemarker模板引擎视图 --> <dependency> <groupId>org.sprin ...

  7. Scala辅助构造器和主构造器

    和java或c++一样,scala也可以有任意多的构造器.不过,scala类有一个构造器比其它所有构造器都更为重要,它就是主构造器.除了主构造器之外,类还可以有任意多的辅助构造器. 有两点需要注意: ...

  8. [py][mx]django处理登录逻辑

    浏览器同源策略(same-origin policy) csrf攻击防御核心点总结 django的cookie和session操作-7天免登录 flask操作cookie&django的see ...

  9. [django]cbv方式

    cbv的方式 1.简单的url from django.views.generic import TemplateView path('', TemplateView.as_view(template ...

  10. Linux 环境配置 网络端口进程命令

    网络通信命令ping 命令路径:/bin/ping 执行权限:所有用户作用:测试网络的连通性语法:ping 选项 IP地址  -c 指定发送次数    ping 命令使用的是icmp协议,不占用端口e ...