奇怪吸引子---LuChen
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=-a*b*i/(a+b) - j*k + c
v=a*j + i*k
w=b*k + i*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=-10.000000
b=-4.000000
c=18.100000
i=1.000000
j=1.000000
k=1.000000
t=0.001000
混沌图像:



奇怪吸引子---LuChen的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- Stanford CS231n - Convolutional Neural Networks for Visual Recognition
网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1 ...
- html----属性操作
1.文本 十六进制值 - 如: #FF0000 一个RGB值 - 如: RGB(255,0,0) 颜色的名称 - 如: red‘’RGBA() 2.水平对齐方式 text-align 属性规定元素中 ...
- SPLAY,LCT学习笔记(一)
写了两周数据结构,感觉要死掉了,赶紧总结一下,要不都没学明白. SPLAY专题: 例:NOI2005 维修数列 典型的SPLAY问题,而且综合了SPLAY常见的所有操作,特别适合新手入门学习(比如我这 ...
- Python3-RabbitMQ 3.7.2学习——Hello World(二)
RabbitMQ环境搭建好了,接下来就是学习编程的入门级hello world. 在运行程序前,要先确保开启RabbitMQ服务 然后安装pika,命令:pip install pika 1.创建一个 ...
- 主机可以ping通虚拟机,但是虚拟机ping不通主机的方法(转)
https://blog.csdn.net/hskw444273663/article/details/81301470
- HDFS上创建文件、写入内容
1.创建文件 hdfs dfs -touchz /aaa/aa.txt 2.写入内容 echo "<Text to append>" | hdfs dfs -appen ...
- oracle表分区的,分区操作,分区查询,子分区查询
一.摘要 有关表分区的一些维护性操作: 注:分区根据具体情况选择. 表分区有以下优点: 1.数据查询:数据被存储到多个文件上,减少了I/O负载,查询速度提高. 2.数据修剪:保存历史数据非常的理想. ...
- lldp学习
http://support.huawei.com/enterprise/docinforeader!loadDocument1.action?contentId=DOC1000088818& ...
- P2700 逐个击破 最小生成树
题目描述 现在有N个城市,其中K个被敌方军团占领了,N个城市间有N-1条公路相连,破坏其中某条公路的代价是已知的,现在,告诉你K个敌方军团所在的城市,以及所有公路破坏的代价,请你算出花费最少的代价将这 ...
- 047 大数据下的java client连接JDBC
1.前提 启动hiveserver2服务 url,username,password. 2.官网 3.程序 4.结果 emp的第一列与第二列 5.源程序 package com.cj.it.hiveU ...