Structured Streaming教程(1) —— 基本概念与使用
近年来,大数据的计算引擎越来越受到关注,spark作为最受欢迎的大数据计算框架,也在不断的学习和完善中。在Spark2.x中,新开放了一个基于DataFrame的无下限的流式处理组件——Structured Streaming,它也是本系列的主角,废话不多说,进入正题吧!
简单介绍
在有过1.6的streaming和2.x的streaming开发体验之后,再来使用Structured Streaming会有一种完全不同的体验,尤其是在代码设计上。
在过去使用streaming时,我们很容易的理解为一次处理是当前batch的所有数据,只要针对这波数据进行各种处理即可。如果要做一些类似pv uv的统计,那就得借助有状态的state的DStream,或者借助一些分布式缓存系统,如Redis、Alluxio都能实现。需要关注的就是尽量快速的处理完当前的batch数据,以及7*24小时的运行即可。
可以看到想要去做一些类似Group by的操作,Streaming是非常不便的。Structured Streaming则完美的解决了这个问题。

在Structured Streaming中,把源源不断到来的数据通过固定的模式“追加”或者“更新”到了上面无下限的DataFrame中。剩余的工作则跟普通的DataFrame一样,可以去map、filter,也可以去groupby().count()。甚至还可以把流处理的dataframe跟其他的“静态”DataFrame进行join。另外,还提供了基于window时间的流式处理。总之,Structured Streaming提供了快速、可扩展、高可用、高可靠的流式处理。
小栗子
在大数据开发中,Word Count就是基本的演示示例,所以这里也模仿官网的例子,做一下演示。
直接看一下完整的例子:
package xingoo.sstreaming
import org.apache.spark.sql.SparkSession
object WordCount {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.master("local")
.appName("StructuredNetworkWordCount")
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
import spark.implicits._
// 创建DataFrame
// Create DataFrame representing the stream of input lines from connection to localhost:9999
val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()
// Split the lines into words
val words = lines.as[String].flatMap(_.split(" "))
// Generate running word count
val wordCounts = words.groupBy("value").count()
// Start running the query that prints the running counts to the console
// 三种模式:
// 1 complete 所有内容都输出
// 2 append 新增的行才输出
// 3 update 更新的行才输出
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()
query.awaitTermination()
}
}
效果就是在控制台输入nc -lk 9999,然后输入一大堆的字符,控制台就输出了对应的结果:

然后来详细看一下代码:
val spark = SparkSession
.builder
.master("local")
.appName("StructuredNetworkWordCount")
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
import spark.implicits._
上面就不用太多解释了吧,创建一个本地的sparkSession,设置日志的级别为WARN,要不控制台太乱。然后引入spark sql必要的方法(如果没有import spark.implicits._,基本类型是无法直接转化成DataFrame的)。
val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()
创建了一个Socket连接的DataStream,并通过load()方法获取当前批次的DataFrame。
val words = lines.as[String].flatMap(_.split(" "))
val wordCounts = words.groupBy("value").count()
先把DataFrame转成单列的DataSet,然后通过空格切分每一行,再根据value做groupby,并统计个数。
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()
调用DataFrame的writeStream方法,转换成输出流,设置模式为"complete",指定输出对象为控制台"console",然后调用start()方法启动计算。并返回queryStreaming,进行控制。
这里的outputmode和format都会后续详细介绍。
query.awaitTermination()
通过QueryStreaming的对象,调用awaitTermination阻塞主线程。程序就可以不断循环调用了。
观察一下Spark UI,可以发现程序稳定的在运行~

总结
这就是一个最基本的wordcount的例子,想象一下,如果没有Structured Streaming,想要统计全局的wordcount,还是很费劲的(即便使用streaming的state,其实也不是那么好用的)。
Structured Streaming教程(1) —— 基本概念与使用的更多相关文章
- Structured Streaming教程(2) —— 常用输入与输出
上篇了解了一些基本的Structured Streaming的概念,知道了Structured Streaming其实是一个无下界的无限递增的DataFrame.基于这个DataFrame,我们可以做 ...
- Structured Streaming教程(3) —— 与Kafka的集成
Structured Streaming最主要的生产环境应用场景就是配合kafka做实时处理,不过在Strucured Streaming中kafka的版本要求相对搞一些,只支持0.10及以上的版本. ...
- Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为St ...
- Structured Streaming Programming Guide结构化流编程指南
目录 Overview Quick Example Programming Model Basic Concepts Handling Event-time and Late Data Fault T ...
- DataFlow编程模型与Spark Structured streaming
流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...
- Structured Streaming编程向导
简介 Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark ...
- 浅谈Spark2.x中的Structured Streaming
在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序c ...
- Apache Spark 2.2.0 中文文档 - Structured Streaming 编程指南 | ApacheCN
Structured Streaming 编程指南 概述 快速示例 Programming Model (编程模型) 基本概念 处理 Event-time 和延迟数据 容错语义 API 使用 Data ...
- Spark之Structured Streaming
目录 Part V. Streaming Stream Processing Fundamentals Structured Streaming Basics Event-Time and State ...
随机推荐
- Linux清除文件内容的几种方法
# 清空或删除大文件内容的五种方法: # 法一:通过重定向到 Null 来清空文件内容 $ >test.sh # 法二:使用 ‘true' 命令重定向来清空文件 $ true > test ...
- c# 界面自适应大小
采用在窗体事件SizeChanged里面代码控制大小和位置,达到自动适应窗体大小,这样做调整起来方便. private void FrmMain_SizeChanged(object sender, ...
- Android用户界面开发:TabHost
TabHost是整个Tab的容器,包括两部分,TabWidget和FrameLayout.TabWidget就是每个tab的标签,FrameLayout则是tab内容.TabHost的二种实现方式:第 ...
- Nginx 下Thinkphp5伪静态
server { listen 80; server_name all.bjed.com; root "F:\www\asdata"; location / { index ind ...
- liunx java环境搭建
1.安装jdk apt install openjdk--jdk-headless //可以直接输入javac会有提示
- laravel使用when搜索遇到状态参数(有0的状态)的坑
今天,使用when()方法写活动列表的接口,有两个状态搜索,都有0这个状态,当传参为0时when()就失效了... 反反复复的验证参数,传参确实是0和1啊...百思不得其解~~~后面仔细想想when( ...
- 求next数组的两种方法
法一解释:转自http://www.cnblogs.com/yjiyjige/p/3263858.html 关键运算步骤 i 0 1 2 3 4 5 6 7 8 9 A B A C D A B A B ...
- Asp.NetMVC和WebForm的请求生命周期
1.MVC的执行过程 用户 ---->控制器--->ViewData进行传值--->视图(进行显示) 2.Controller中的Action 主要进行的作用: 1.处理用户的请求 ...
- 【C语言】 二叉树的基本运算
• 二叉树节点类型BTNode: typedef struct node { char data; struct node *lchild, *rchild; } BTNode; 创建二叉树 void ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...