E2 - Median on Segments (General Case Edition)

思路:

首先我们计算出solve(m):中位数大于等于m的方案数,那么最后答案就是solve(m) - solve(m+1)

那么怎么计算sovle(m)呢?

对于一个区间[l,r],如果它的中位数大于等于m,那么这个区间中 (大于等于m的数的个数) > (小于m的数的个数)

如果记a[i]大于等于m为+1,小于m 为 -1,即 sum(l, r)  > 0

我们枚举右端点 i ,并且同时计算sum(1, i) ,那么对于这个右端点,我们只要找到之前的 sum 中 < sum(1, i)的个数(左端点的个数),这个可以用树状数组维护

但是我们有一个O(n)的方法求,用了类似莫队的方法,记s[i]为之前的sum为i的个数,add为上一个小于sum(1, i-1)的个数,对于当前的sum,

如果它要加1,add += s[sum],  sum++

如果它要减1,sum --, add -= s[sum]

这样得出的add就是当前的小于sum(1, i)的个数

代码:

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define piii pair<int,pii>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 2e5 + ;
int a[N], cnt[N*], n, m;
LL solve(int m) {
int s = n;
mem(cnt, );
cnt[s] = ;
LL add = , ans = ;
for (int i = ; i <= n; i++) {
if(a[i] >= m) add += cnt[s], s++;
else s--, add -= cnt[s];
cnt[s]++;
ans += add;
}
return ans;
}
int main() {
scanf("%d %d", &n, &m);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
printf("%lld\n", solve(m) - solve(m+));
return ;
}

Codeforces 1005 E2 - Median on Segments (General Case Edition)的更多相关文章

  1. Codeforces Round #496 (Div. 3) E2 - Median on Segments (General Case Edition)

    E2 - Median on Segments (General Case Edition) 题目大意:给你一个数组,求以m为中位数的区间个数. 思路:很巧秒的转换,我们把<= m 数记为1, ...

  2. CodeForces -Codeforces Round #496 (Div. 3) E2. Median on Segments (General Case Edition)

    参考:http://www.cnblogs.com/widsom/p/9290269.html 传送门:http://codeforces.com/contest/1005/problem/E2 题意 ...

  3. CodeForces - 1005E2:Median on Segments (General Case Edition) (函数的思想)

    You are given an integer sequence a1,a2,…,ana1,a2,…,an. Find the number of pairs of indices (l,r)(l, ...

  4. Codeforces #496 E1. Median on Segments (Permutations Edition)

    http://codeforces.com/contest/1005/problem/E1 题目 https://blog.csdn.net/haipai1998/article/details/80 ...

  5. Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】

    传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...

  6. Codeforces Round #496 (Div. 3 ) E1. Median on Segments (Permutations Edition)(中位数计数)

    E1. Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 25 ...

  7. CF1005E1 Median on Segments (Permutations Edition) 思维

    Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 me ...

  8. Codeforces Round #535 E2-Array and Segments (Hard version)

    Codeforces Round #535 E2-Array and Segments (Hard version) 题意: 给你一个数列和一些区间,让你选择一些区间(选择的区间中的数都减一), 求最 ...

  9. Codeforces Round #496 (Div. 3) E1. Median on Segments (Permutations Edition) (中位数,思维)

    题意:给你一个数组,求有多少子数组的中位数等于\(m\).(若元素个数为偶数,取中间靠左的为中位数). 题解:由中位数的定义我们知道:若数组中\(<m\)的数有\(x\)个,\(>m\)的 ...

随机推荐

  1. Java中Map接口的遍历

    package Test4; import java.util.Collection;import java.util.HashMap;import java.util.Iterator;import ...

  2. Mac通过安装Go2Shell实现“在当前目录打开iTerm2”

    先上效果图: 1.从官网下载最新的版本,不要从苹果商店下载,因为苹果商店的版本比较旧,只支持Finders10.6~10.10,不支持最新的版本 http://zipzapmac.com/Go2She ...

  3. [SDOI2016]游戏 树剖+李超树

    目录 链接 思路 update 代码 链接 https://www.luogu.org/problemnew/show/P4069 思路 树剖+超哥线段树 我已经自毙了,自闭了!!!! update ...

  4. FJUT seventh的tired树上路径(01字典树)题解

    思路(来自题解): 众所周知树上两个点xy的距离是deep[x]+deep[y]-deep[lca(x,y)]*2 然后我们把这个加减法换成异或,我们就会发现,deep[lca(x,y)]被消掉了 所 ...

  5. 最最简单的c语言函数汇编分析

    0x01 环境 xp+vc6.0 0x02 代码 int plus(int x, int y) { return 0; } 以下是vc6.0的反汇编窗口 1: int plus(int x, int ...

  6. 【修改缓存路径】修改Gradle缓存路径的几种方式

    起因 Android Studio的gradle在缓存处理上有时候会莫名其妙的出问题,必要时需要手动删除缓存,然后重新编译.有时也有出于其他考虑指定gradle缓存路径. 方法1:修改gradle文件 ...

  7. 集合03_Map

    Map集合总览 保存映射关系key-value键值对,键唯一,值可以重复,Map和Set的实现类相似 Entry是Map的内部类 Map接口中常用的方法: void clear() Set keySe ...

  8. P4145 上帝造题的七分钟2 / 花神游历各国

    思路 每个数不会被开方超过log次,对每个数暴力开方即可 代码 #include <algorithm> #include <cstring> #include <cst ...

  9. [thymeleaf] - 1.Thymeleaf是什么

    Thymeleaf是⾯向Web和独⽴环境的现代服务器端Java模板引擎,能够处 理HTML,XML,JavaScript,CSS甚⾄纯⽂本. Thymeleaf旨在提供⼀个优雅的.⾼度可维护的创建模板 ...

  10. [bootstrapValidator] - bootstrap的验证工具

    翻了下之前和同事做的一个验证 <!--bootstrapValidator--> <script type="text/javascript" th:inline ...