POJ 3662 Telephone Lines (二分+Dijkstra: 最小化第k大的值)
题意
Farmer John想从电话公司修一些电缆连接到他农场。已知N个电线杆编号为1,2,⋯N,其中1号已经连接电话公司,N号为农场,有P对电线杆可连接。
现给出P对电线杆距离Ai,Bi,Li表示Ai和Bi可连接,需要长度为Li的电缆。
电话公司赞助FJ K条免费电缆,额外的支出为剩下所需电缆的最大长度。求出最小费用。
思路
设mid为某条线的长度,长于mid的线放到免费额度里,否则自己掏钱。如果存在一个临界值x,使得长于x的电线数量恰好等于K,这个临界值对应的解就是最优解。如何计算长于mid的电线数量呢?排序比较肯定不行的,因为不知道这条电线用不用得上。所以需要Dijkstra,又因为在mid固定的条件下,电线的花费只取决于长度是否大于mid,所以可以将大于的取为1,小于的取为0。这样花费就可以计算了,并且花费等于长于mid的电线数量,也就是需要自己掏钱的电线的数量。
#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
int N, P, K;
struct edge { // 顶点属性
int to, length;
edge(int to, int length) : to(to), length(length) {}
bool operator<(const edge &b) const {
return length > b.length;
}
};
vector<edge> G[1005];
int d[1005];
bool dijkstra_C(int s, int x) { // 求出长度>x的最少个数(>x边权为1,否则为0,求最短路),判断x是否免费,当二分判定出第一个不免费的x,就是所求的最小的最大x。
priority_queue<edge> que;
memset(d, 0x3f, sizeof(d));
d[s] = 0;
que.push(edge(s, 0));
while (!que.empty()) {
edge p = que.top(); que.pop();
int v = p.to;
if (d[v] < p.length) continue;
for (unsigned int i = 0; i<G[v].size(); ++i) {
edge e = G[v][i];
int len = e.length > x;
if (d[e.to] > d[v] + len) {
d[e.to] = d[v] + len;
que.push(edge(e.to, d[e.to]));
}
}
}
return d[N] <= K;
}
void solve() {
dijkstra_C(1, 1);
if (d[N] == 0x3f3f3f3f) {
printf("-1\n");
return;
}
int lb = -1, ub = 1000000 + 5; // (lb, ub)
while (ub - lb > 1) {
int mid = (lb + ub) >> 1;
if (dijkstra_C(1, mid)) ub = mid; // (lb, ub]
else lb = mid;
}
printf("%d\n", ub);
}
int main() {
scanf("%d%d%d", &N, &P, &K);
int a, b, l;
for (int i = 0; i < P; ++i) {
scanf("%d%d%d", &a, &b, &l);
G[a].push_back(edge(b, l));
G[b].push_back(edge(a, l));
}
solve();
return 0;
}
POJ 3662 Telephone Lines (二分+Dijkstra: 最小化第k大的值)的更多相关文章
- POJ 3662 Telephone Lines (二分+dijkstra)
题意: 多年以后,笨笨长大了,成为了电话线布置师.由于地震使得某市的电话线全部损坏,笨笨是负责接到震中市的负责人. 该市周围分布着N(1<=N<=1000)根据1……n顺序编号的废弃的电话 ...
- poj_3662 最小化第k大的值
题目大意 有N个节点以及连接的P个无向边,现在要通过这P条边从1号节点连接到N号节点.若无法连接成功,则返回-1:若能够连接成功,那么其中用到了L条边,这L条边中有K条边可以免费,L-K条边不能免费, ...
- POJ 3662 Telephone Lines(二分+最短路)
查看题目 最小化第K大值. 让我怀疑人生的一题目,我有这么笨? #include <cstdio> #include <queue> #include <cstring& ...
- POJ 3662 Telephone Lines【Dijkstra最短路+二分求解】
Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7214 Accepted: 2638 D ...
- (poj 3662) Telephone Lines 最短路+二分
题目链接:http://poj.org/problem?id=3662 Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total ...
- poj 3662 Telephone Lines dijkstra+二分搜索
Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5696 Accepted: 2071 D ...
- poj 3662 Telephone Lines(最短路+二分)
Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6973 Accepted: 2554 D ...
- poj 3662 Telephone Lines
Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7115 Accepted: 2603 D ...
- POJ 3273 Monthly Expense二分查找[最小化最大值问题]
POJ 3273 Monthly Expense二分查找(最大值最小化问题) 题目:Monthly Expense Description Farmer John is an astounding a ...
随机推荐
- 从面向对象的角度重新认识JS世界
一. 背景 距离上一篇JS文章已经20天,经重新总结发现,上一篇概况的有点浅显,适合初学js的入门了解,但对于已经学习js一段时间的人,或者是想系统的了解JS体系,接下来的文章可能会更有帮助. 该系 ...
- FlowLayout OnSizeChanged
在FlowLayout里加了20个控件,当窗口变化时,改变这20个控件的宽高,结果发现在直接点最大化时, 计算不正确导致自身的滚动条出不来.把改变大小的代码直接添加Form窗口的onSizeChagn ...
- springboot+rabbitmq整合示例程
关于什么是rabbitmq,请看另一篇文: http://www.cnblogs.com/boshen-hzb/p/6840064.html 一.新建maven工程:springboot-rabbit ...
- Activity生命周期函数、onSaveInstanceState()和onRestoreInstanceState()的介绍
http://www.cnblogs.com/tianzhijiexian/p/3885472.html
- WPF开发中的多线程的问题
今天帮助同事做了一个WPF版的多线程demo,分享给大家. 要实现的问题就是非主线程thread1 去后台不停的取新数据,当有新数据的时候就会展示到前台. 我给他做的demo实现一个按秒的计数器,随着 ...
- 【逆向工具】使用x64dbg+spy去除WinRAR5.40(64位)广告弹框
1 学习目标 WinRAR5.40(64位)的弹框广告去除,由于我的系统为x64版本,所以安装了WinRAR(x64)版本. OD无法调试64位的程序,可以让我熟悉x64dbg进行调试的界面. 其次是 ...
- php学习之mysqli的面向对象
// mySqlTool.php 封装好的工具类 <?php class SqlTool{ private $conn; private $host="localhost" ...
- Advanced Installer 14.9 – WPF或winform应用程序打包成exe文件
Advanced Installer14.9 下载地址:https://pan.baidu.com/s/1uj2QcxWcpGdqsjAinNPIAw 提取码:sa3r 选择Visual Studi ...
- 读SRE Google运维解密有感(一)
前言 这几天打算利用碎片时间读了一下"SRE Google运维解密"这本书,目前读了前几章,感觉收获颇多,结合自己的工作经历和书中的要点,写一些感悟和思考 SRE 有关SRE我就不 ...
- centos6.5下java和tomcat环境部署
软件包: tomcat安装包 apache-tomcat-7.0.67.zip jdk安装包 jdk-6u10-linux-x64.bin 下载地址:http://www.oracle.com/tec ...