基于Python的机器学习实战:KNN
1.KNN原理:
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签。一般来说,只选择样本数据集中前 $k$ 个最相似的数据,这就是KNN算法 $k$ 的出处, 通常 $k$ 是不大于20的整数。最后,选择 $k$ 个最相似数据中出现次数最多的分类,作为新数据的分类。
2.实验准备:
- Python
- scikit-learn(一个基于python的机器学习库)
3.实验代码:
代码有两个版本,一个是自己编写的简单的KNN算法实现,一个是基于scikit-learn库中KNN算法实现的,数据均采用scikit-learn中的手写体数据集。
版本1(自己编写):
# -*- coding: utf-8 -*-
"""
This script is an exercise on KNN. Created on Tue Nov 03 21:21:39 2015 @author: 90Zeng
""" import numpy as np
from sklearn import datasets
import operator #-----------------function classify--------------------------------------
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[ 0 ]
# 计算输入的向量inX与所有样本的距离
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances ** 0.5
# 对距离大小进行排序
sortedDistIndices = distances.argsort()
classCount = {}
# 选择距离最小的 K 个点
for i in range(k):
voteLabel = labels[ sortedDistIndices[i] ]
classCount[ voteLabel ] = classCount.get(voteLabel, 0) + 1
# 按照类别的数量多少进行排序
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] # 返回类别数最多的类别名称
#-------------------end of function classify-------------------------------- def handwritingClassTest():
# 导入数据
digits = datasets.load_digits()
totalNum = len(digits.data)
# 选出90%样本作为训练样本,其余10%测试
trainNum = int(0.8 * totalNum)
trainX = digits.data[0 : trainNum]
trainY = digits.target[0 : trainNum] testX = digits.data[trainNum:]
testY = digits.target[trainNum:] errorCount = 0
testExampleNum = len( testX )
for i in range( testExampleNum ):
# 测试样本在测试集中真实的类别
trueLabel = testY[i]
classifierResult = classify0( testX[ i, : ], trainX, trainY, 5 )
print "\nThe classifier came back with: %d, the real answer is: %d"\
% ( classifierResult, trueLabel )
if trueLabel != classifierResult:
errorCount += 1
else:
pass
print "\nThe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (
errorCount / float( testExampleNum)
) if __name__ == '__main__':
print "start..."
handwritingClassTest()
运行结果:

版本2(使用库函数):
# -*- coding: utf-8 -*-
"""
This script is an exercise on KNN. Created on Tue Nov 06 21:26:39 2015 @author: ZengJiulin
"""
print(__doc__) import numpy as np
from sklearn import neighbors, datasets digits = datasets.load_digits()
totalNum = len(digits.data)
# 选出90%样本作为训练样本,其余10%测试
trainNum = int(0.8 * totalNum)
trainX = digits.data[0 : trainNum]
trainY = digits.target[0 : trainNum] testX = digits.data[trainNum:]
testY = digits.target[trainNum:] n_neighbors = 10 clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')
clf.fit(trainX, trainY)
Z = clf.predict(testX) print "\nthe total error rate is: %f" % ( 1 - np.sum(Z==testY) / float(len(testX)) )
运行结果:

4.总结
KNN的优点:精度高、对异常值不敏感,无数据输入假定
缺点:计算复杂度高(要计算待分类样本与所有已知类别样本的距离),空间复杂度高(存储所有样本点和目标样本的距离)
基于Python的机器学习实战:KNN的更多相关文章
- 基于Python的机器学习实战:Apriori
目录: 1.关联分析 2. Apriori 原理 3. 使用 Apriori 算法来发现频繁集 4.从频繁集中挖掘关联规则 5. 总结 1.关联分析 返回目录 关联分析是一种在大规模数据集中寻找有趣 ...
- 基于Python的机器学习实战:AadBoost
目录: 1. Boosting方法的简介 2. AdaBoost算法 3.基于单层决策树构建弱分类器 4.完整的AdaBoost的算法实现 5.总结 1. Boosting方法的简介 返回目录 Boo ...
- 【python与机器学习实战】感知机和支持向量机学习笔记(一)
对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...
- 机器学习实战kNN之手写识别
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- 《机器学习实战-KNN》—如何在cmd命令提示符下运行numpy和matplotlib
问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import mat ...
- 朴素贝叶斯算法的python实现 -- 机器学习实战
import numpy as np import re #词表到向量的转换函数 def loadDataSet(): postingList = [['my', 'dog', 'has', 'fle ...
- 基于python的机器学习开发环境安装(最简单的初步开发环境)
一.安装Python 1.下载安装python3.6 https://www.python.org/getit/ 2.配置环境变量(2个) 略...... 二.安装Python算法库 安装顺序:Num ...
- 机器学习实战-KNN
KNN算法很简单,大致的工作原理是:给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于 ...
随机推荐
- MT【238】内心轨迹
已知$F_1,F_2$为椭圆$C:\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$的左右焦点,点$P$在椭圆$C$上移动时,$\Delta{F_1PF_2}$的内心$I$的轨迹方程为_ ...
- 数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...
- 架构师成长之路6.1 DNS理论
点击返回架构师成长之路 架构师成长之路6.1 DNS理论 1.DNS一些基本概念 ① FQDN:Full Qualified Domain Name,完全限定域名,即每个域在全球网络都是唯 ...
- bzoj3698 XWW的难题
题意:给你个n * n的实数矩阵,你需要把它中的每个数上/下取整,并满足如下条件: 每行最后一个数等于前面的和. 每列最后一个数等于前面的和. n行n列的那个元素始终为0,不予考虑. 求满足条件下矩阵 ...
- Persits.Jpeg CMYK-to-RGB
这几天发现有几个用户上传的图片显示一个“红叉叉”,用迅雷下载一看,原来图片的“模式”是CMYK,这样的模式是不能在IE中正常显示的. 我想起能不能用程序自动转换呢? 在网上看到利用Persits.Jp ...
- react与react-router
路由在单页应用极其常见,不论是angularjs项目还是react项目,都有路由. 在react项目中使用路由,我们当然是全局安装react-router. 第一步: 第二步:创建几个要跳转到的页面 ...
- centos7使用kubeadm配置高可用k8s集群
CountingStars_ 关注 2018.08.12 09:06* 字数 464 阅读 88评论 0喜欢 0 简介 使用kubeadm配置多master节点,实现高可用. 安装 实验环境说明 实验 ...
- CodeForces892E 可撤销并查集/最小生成树
http://codeforces.com/problemset/problem/892/E 题意:给出一个 n 个点 m 条边的无向图,每条边有边权,共 Q 次询问,每次给出 ki 条边,问这些边 ...
- 虚拟化技术之KVM
虚拟化技术之KVM 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是虚拟化 其实虚拟化技术已经不是一个新技术了,上个世纪六十年代IBM公司已经在使用,只不过后来(上个世纪八 ...
- CM记录-HDFS用户组映射
hdfs可以将linux用户映射为hdfs用户,也就是说,你当前操作hdfs的用户身份就是你当前登录的linux用户 usermod -a -G hive admin ---将admin用户加到hi ...