1.KNN原理:

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签。一般来说,只选择样本数据集中前 $k$ 个最相似的数据,这就是KNN算法 $k$ 的出处, 通常 $k$ 是不大于20的整数。最后,选择 $k$ 个最相似数据中出现次数最多的分类,作为新数据的分类。

2.实验准备:

  • Python
  • scikit-learn(一个基于python的机器学习库)

3.实验代码:

代码有两个版本,一个是自己编写的简单的KNN算法实现,一个是基于scikit-learn库中KNN算法实现的,数据均采用scikit-learn中的手写体数据集。

版本1(自己编写):

# -*- coding: utf-8 -*-
"""
This script is an exercise on KNN. Created on Tue Nov 03 21:21:39 2015 @author: 90Zeng
""" import numpy as np
from sklearn import datasets
import operator #-----------------function classify--------------------------------------
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[ 0 ]
# 计算输入的向量inX与所有样本的距离
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances ** 0.5
# 对距离大小进行排序
sortedDistIndices = distances.argsort()
classCount = {}
# 选择距离最小的 K 个点
for i in range(k):
voteLabel = labels[ sortedDistIndices[i] ]
classCount[ voteLabel ] = classCount.get(voteLabel, 0) + 1
# 按照类别的数量多少进行排序
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] # 返回类别数最多的类别名称
#-------------------end of function classify-------------------------------- def handwritingClassTest():
# 导入数据
digits = datasets.load_digits()
totalNum = len(digits.data)
# 选出90%样本作为训练样本,其余10%测试
trainNum = int(0.8 * totalNum)
trainX = digits.data[0 : trainNum]
trainY = digits.target[0 : trainNum] testX = digits.data[trainNum:]
testY = digits.target[trainNum:] errorCount = 0
testExampleNum = len( testX )
for i in range( testExampleNum ):
# 测试样本在测试集中真实的类别
trueLabel = testY[i]
classifierResult = classify0( testX[ i, : ], trainX, trainY, 5 )
print "\nThe classifier came back with: %d, the real answer is: %d"\
% ( classifierResult, trueLabel )
if trueLabel != classifierResult:
errorCount += 1
else:
pass
print "\nThe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (
errorCount / float( testExampleNum)
) if __name__ == '__main__':
print "start..."
handwritingClassTest()

运行结果:

版本2(使用库函数):

# -*- coding: utf-8 -*-
"""
This script is an exercise on KNN. Created on Tue Nov 06 21:26:39 2015 @author: ZengJiulin
"""
print(__doc__) import numpy as np
from sklearn import neighbors, datasets digits = datasets.load_digits()
totalNum = len(digits.data)
# 选出90%样本作为训练样本,其余10%测试
trainNum = int(0.8 * totalNum)
trainX = digits.data[0 : trainNum]
trainY = digits.target[0 : trainNum] testX = digits.data[trainNum:]
testY = digits.target[trainNum:] n_neighbors = 10 clf = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')
clf.fit(trainX, trainY)
Z = clf.predict(testX) print "\nthe total error rate is: %f" % ( 1 - np.sum(Z==testY) / float(len(testX)) )

运行结果:

4.总结

KNN的优点:精度高、对异常值不敏感,无数据输入假定

缺点:计算复杂度高(要计算待分类样本与所有已知类别样本的距离),空间复杂度高(存储所有样本点和目标样本的距离)

基于Python的机器学习实战:KNN的更多相关文章

  1. 基于Python的机器学习实战:Apriori

    目录: 1.关联分析 2. Apriori 原理 3. 使用 Apriori 算法来发现频繁集 4.从频繁集中挖掘关联规则 5. 总结 1.关联分析  返回目录 关联分析是一种在大规模数据集中寻找有趣 ...

  2. 基于Python的机器学习实战:AadBoost

    目录: 1. Boosting方法的简介 2. AdaBoost算法 3.基于单层决策树构建弱分类器 4.完整的AdaBoost的算法实现 5.总结 1. Boosting方法的简介 返回目录 Boo ...

  3. 【python与机器学习实战】感知机和支持向量机学习笔记(一)

    对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...

  4. 机器学习实战kNN之手写识别

    kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...

  5. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...

  6. 《机器学习实战-KNN》—如何在cmd命令提示符下运行numpy和matplotlib

    问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import mat ...

  7. 朴素贝叶斯算法的python实现 -- 机器学习实战

    import numpy as np import re #词表到向量的转换函数 def loadDataSet(): postingList = [['my', 'dog', 'has', 'fle ...

  8. 基于python的机器学习开发环境安装(最简单的初步开发环境)

    一.安装Python 1.下载安装python3.6 https://www.python.org/getit/ 2.配置环境变量(2个) 略...... 二.安装Python算法库 安装顺序:Num ...

  9. 机器学习实战-KNN

    KNN算法很简单,大致的工作原理是:给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于 ...

随机推荐

  1. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

  2. python多线程用法及与单线程耗时比较

    下面,通过一个简单的例子,来把多线程和单线程执行任务的耗时做个比较 import time import threading # 音乐播放器 def music(func, loop): for i ...

  3. CAN总线中节点ID相同会怎样?

    CAN-bus网络中原则上不允许两个节点具有相同的ID段,但如果两个节点ID段相同会怎样呢? 实验前,我们首先要对CAN报文的结构组成.仲裁原理有清晰的认识. 一.CAN报文结构 目前使用最广泛的CA ...

  4. php关于Session和cookie总结

    什么是 Cookie? cookie 常用于识别用户.cookie 是服务器留在用户计算机中的小文件.每当相同的计算机通过浏览器请求页面时,它同时会发送 cookie.通过 PHP,能够创建并取回 c ...

  5. 在任意位置获取应用程序CONTEXT

    Android程序中访问资源时需要提供Context,一般来说只有在各种component中(Activity, Provider等等)才能方便的使用api来获取Context, 而在某些工具类中要获 ...

  6. Luogu 1080 【NOIP2012】国王游戏 (贪心,高精度)

    Luogu 1080 [NOIP2012]国王游戏 (贪心,高精度) Description 恰逢H国国庆,国王邀请n位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己 ...

  7. A1084. Broken Keyboard

    On a broken keyboard, some of the keys are worn out. So when you type some sentences, the characters ...

  8. asp.net C#压缩打包文件例子

    /// <summary> /// 压缩和解压文件 /// </summary> public class ZipClass { /// <summary> /// ...

  9. (java保留n位小数)precise math function 北京信息科技大学第十届ACM程序设计竞赛 第2题

    precise math function Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Othe ...

  10. linq总结系列(二)---Expression

    一.linq中的表达式和表达式树 Linq中的表达式(Expression<TDel>)是强类型的lambda表达式,对Func和Action形式的委托做了一层封装. lambda表达式的 ...