noi2017 day2t2
设a[i]为当前方案中第 1..i 天变质的蔬菜有几个,b[i]为前i天至少能卖出几个,方案可行的条件是对任意i有a[i]<=b[i],用线段树维护b[i]-a[i]。
从小到大枚举天数,枚举到第w天时,对所有u>=w,b[u]+=m,表示第w天从可以卖0个变为m个
选一个蔬菜,在第w天变质,则相当于对所有u>=w,a[u]+=1,因此必须保证w在b[i]-a[i]的最右一个零点的右侧
对每种蔬菜都贪心先取变质时间晚的,用另一颗线段树维护变质时间>=w的最大价值,每次贪心选可行的价值最大的一个更新答案
可以构造一个等价的费用流模型,从而证明贪心的正确性
#include<bits/stdc++.h>
const int N=1e5+;
typedef long long i64;
char ib[N*],*ip=ib,ob[N*],*op=ob;
int _(){
int x=;
while(*ip<)++ip;
while(*ip>)x=x*+*ip++-;
return x;
}
void pr(i64 x){
int ss[],sp=;
do ss[++sp]=x%+;while(x/=);
while(sp)*op++=ss[sp--];
*op++=;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int n,m,qp;
i64 as[N],ans=;
int qs[N],md=;
struct item{
int a,s,c,x;
void R(){
a=_(),s=_(),c=_(),x=_();
a+=s;
}
void ins();
void dec(){
ans+=a;
--c;
if(s)a-=s,s=;
}
int tm(){
if(!x)return md;
return min(md,(c+x-)/x);
}
bool operator<(const item&i)const{return a>i.a;}
}is[N];
std::multiset<item>st[N];
int tr[<<|],mx=;
void up(int x){
tr[mx+x]=st[x].size()?st[x].begin()->a:;
for(x=mx+x>>;x;x>>=)tr[x]=max(tr[x<<],tr[x<<^]);
}
void item::ins(){
if(c<=)return;
int x=tm();
st[x].insert(*this);
up(x);
}
void maxs(int&a,int b){if(a<b)a=b;}
void mins(int&a,int b){if(a>b)a=b;}
int _l,_a;
struct node{
node*lc,*rc;
int L,R,M;
int v,a,p;
void add(int x){
v+=x,a+=x;
}
void add(){
if(_l<=L)return add(_a);
dn();
if(_l<=M)lc->add();
rc->add();
up();
}
void dn(){
if(a){
lc->add(a);
rc->add(a);
a=;
}
}
void up(){
v=rc->v,p=rc->p;
if(lc->v<v)v=lc->v,p=lc->p;
}
}ns[N*],*np=ns,*rt;
node*build(int L,int R){
node*w=np++;
w->L=L,w->R=R;
w->p=R;
if(L<R){
int M=w->M=L+R>>;
w->lc=build(L,M);
w->rc=build(M+,R);
}
return w;
}
bool chk(int pos){
int mw=;
for(int w=mx+pos-;w;w>>=)if((~w&)&&tr[w+]>tr[mw])mw=w+;
if(!mw)return ;
for(;mw<mx;mw<<=,mw+=(tr[mw]<tr[mw+]));
mw-=mx;
item i=*st[mw].begin();
st[mw].erase(st[mw].begin());up(mw);
i.dec();
i.ins();
_l=mw,_a=-,rt->add();
return ;
}
int main(){
fread(ib,,sizeof(ib),stdin);
n=_();m=_();qp=_();
for(int i=;i<n;++i)is[i].R();
for(int i=;i<qp;++i)maxs(md,qs[i]=_());
rt=build(,md);
for(mx=;mx<=md+;mx<<=);
for(int i=;i<n;++i)is[i].ins();
for(int i=;i<=md;++i){
_l=i,_a=m,rt->add();
while(){
int pos=rt->v?:rt->p+;
if(pos>n||!chk(pos))break;
}
as[i]=ans;
}
for(int i=;i<qp;++i)pr(as[qs[i]]);
fwrite(ob,,op-ob,stdout);
return ;
}
noi2017 day2t2的更多相关文章
- NOIP 2012 Day2T2 借教室题解
NOIP 2012 Day2T2 借教室题解 题目传送门:http://codevs.cn/problem/1217/ 题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动 ...
- LOJ_2305_「NOI2017」游戏 _2-sat
LOJ_2305_「NOI2017」游戏 _2-sat 题意: 给你一个长度为n的字符串S,其中第i个字符为a表示第i个地图只能用B,C两种赛车,为b表示第i个地图只能用A,C两种赛车,为c表示第i个 ...
- [NOI2017]蔬菜
[NOI2017]蔬菜 题目描述 大意就是有\(n\)种物品,第\(i\)个物品有\(c_i\)个,单价是\(a_i\).然后每天你可以卖出最多\(m\)个物品.每天结束后第\(i\)种物品会减少\( ...
- BZOJ4946[Noi2017]蔬菜——线段树+堆+模拟费用流
题目链接: [Noi2017]蔬菜 题目大意:有$n$种蔬菜,每种蔬菜有$c_{i}$个,每种蔬菜每天有$x_{i}$个单位会坏掉(准确来说每天每种蔬菜坏掉的量是$x_{i}-$当天这种蔬菜卖出量), ...
- [NOI2017]游戏(2-SAT)
这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...
- 【BZOJ4946】[NOI2017]蔬菜(贪心)
[BZOJ4946][NOI2017]蔬菜(贪心) 题面 BZOJ 洛谷 UOJ 题解 忽然发现今年\(NOI\)之前的时候切往年\(NOI\)的题目,就\(2017\)年的根本不知道怎么下手(一定是 ...
- [NOI2017]泳池——概率DP+线性递推
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...
- bzoj4946: [Noi2017]蔬菜 神烦贪心
题目链接 bzoj4946: [Noi2017]蔬菜 题解 挺神的贪心 把第次买的蔬菜拆出来,记下每种蔬菜到期的日期,填第一单位蔬菜比其他的要晚 按价格排序后,贪心的往前面可以填的位置填就可以了.找可 ...
- NOI2017 游记
成功在NOI2017退役……现在的我已经是一只退役狗了 结果也一直到了退役,我都还不会半平面交,不会单纯形,不会非旋转版Treap…… FWT我也不熟,分治FFT我也只写过一道板子题 但是现在已经退役 ...
随机推荐
- BZOJ-5244 最大真因数(min25筛)
题意:一个数的真因数指不包括其本身的所有因数,给定L,R,求这个区间的所有数的最大真因数之和. 思路:min25筛可以求出所有最小因子为p的数的个数,有可以求出最小因子为p的所有数之和. 那么此题就是 ...
- 线段树专题2-(加强版线段树-可持续化线段树)主席树 orz! ------用于解决区间第k大的问题----xdoj-1216
poj-2104(区间第K大问题) #include <iostream> #include <algorithm> #include <cstdio> #incl ...
- RNN-LSTM-GRU-BIRNN
https://blog.csdn.net/wangyangzhizhou/article/details/76651116 共三篇 RNN的模型展开后多个时刻隐层互相连接,而所有循环神经网络都有一个 ...
- ideal通过svn上传项目和激活方式
激活方式: http://www.ideadev.club/topic/detail/102?anchor=1526259147353#1526259147353
- Extend a root LVM partition online
There is also a quick remedy for the emergency situation when your root partition runs out of disk s ...
- Truthy and Falsy Values and Equality Operators
最近在学习JS. 有一些概念还希望跟大家分享出来 Truthy and Falsy Values Falsy Values: undefined, null, 0, '', NaN(not a nu ...
- 通过LoadGenerator将Linux作为负载机进行压力测试
前提说明: 测试架构:controller部署在windows操作系统下(windows下安装loadrunner的过程,可以去网上搜下,这里不做解释),loadgenerator部署在linux下. ...
- 用actor model实现intel tbb这样的用法
关于什么事actor model,什么事intel tbb这样的用法我就不详细说了,具体请上网查文档 class MyActor { F f; MyActor inputs[]; MyActor ou ...
- firefox extension教程
https://developer.mozilla.org/zh-CN/docs/Add-ons/Overlay_Extensions/XUL_School/The_Essentials_of_an_ ...
- oracle之 如何 dump logfile
这篇文章解释了如何在联机或归档重做日志文件中获取转储. 约束和限制:1.数据库必须安装(或打开).更改系统转储日志文件与任何实例无关,因此不需要为其操作安装数据库.但是,在ALTER SYSTEM D ...