1. RNN神经网络模型原理

2. RNN神经网络模型的不同结构

3. RNN神经网络-LSTM模型结构

1. 前言

RNN( Recurrent Neural Network 循环(递归)神经网络) 跟人的大脑记忆差不多。我们的任何决定,想法都是根据我们之前已经学到的东西产生的。RNN通过反向传播和记忆机制,能够处理任意长度的序列,在架构上比前馈神经网络更符合生物神经网络的结构,它的产生也正是为了解决这类问题而应用而生的。今天本文介绍RNN的几种不同的结构,有1vsN,Nvs1,NvsM等结构。

2. 1vsN RNN结构

输入只有一个\(X\),输出有多个\(y_1,y_2,...,y_t\)

这种1vsN结构的公式为:
\[
h_t=f(UX+Wh_{t-1}+b)
\]
\[
y_t=softmax(Vh_t+c)
\]

应用场景:

  • 从图像生成文字(image caption),此时输入的是图像的特征,而输出的序列是一段句子。
  • 从类别生成语言或音乐等。

3. Nvs1 RNN结构

输入有多个\(x_1,x_2,...,x_t\),输出只有一个\(Y\)

这种1vsN结构的公式为:
\[
h_t=f(Ux_t+Wh_{t-1}+b)
\]
\[
Y=softmax(Vh_T+c)
\]

应用场景:

  • 这种结构通常用来处理序列分类问题。如输入一段文字判别所属的类别,输入一个句子判断真情感倾向,输入一段视频并判断它的类别等等。

4. NvsM RNN结构

在NvsM里面我们又可以再细分,如果N=M那就是一一对应的RNN结构

输入有多个\(x_1,x_2,...,x_t\),输出有多个\(y_1,y_2,...,y_t\)

应用场景:

  • 这种广泛的用于序列标注。

另一种是N!=M的RNN结构

输入有多个\(x_1,x_2,...,x_n\),输出有多个\(y_1,y_2,...,y_m\)

如下所示:

应用场景:

  • 这种结构广泛的用于机器翻译,输入一个文本,输出另一种语言的文本。

2. RNN神经网络模型的不同结构的更多相关文章

  1. 1. RNN神经网络模型原理

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 循环神经网络(recurrent neural network)源自于1982年由 ...

  2. RNN神经网络模型原理

    1. 前言 循环神经网络(recurrent neural network)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络. 传统的机器学习算法非常依赖于人工提取的特征, ...

  3. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  4. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  5. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  6. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  7. 机器学习入门-BP神经网络模型及梯度下降法-2017年9月5日14:58:16

    BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...

  8. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  9. BP神经网络模型及梯度下降法

    BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...

随机推荐

  1. hdu 3068 最长回文【manacher】(模板题)

    <题目链接> 最长回文 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如ab ...

  2. HDU 3761 炸碉堡【半平面交(nlogn)】+【二分】

    <题目链接> <   转载于   > 题目大意: 给出一个凸多边形,顶点为一些防御塔,保护范围是凸多形内部,不包括边界,在多边形内部选择一点,使得对方至少需要摧毁的塔防数量最多 ...

  3. python爬虫之反爬虫(随机user-agent,获取代理ip,检测代理ip可用性)

    python爬虫之反爬虫(随机user-agent,获取代理ip,检测代理ip可用性) 目录 随机User-Agent 获取代理ip 检测代理ip可用性 随机User-Agent fake_usera ...

  4. 免费的ASP.NET空间和SQLServer2008 Express

      Login Register Web Hosting Support Forum Ask Experts Articles ASP.NET 4.5 & SQL 2012 Hosting P ...

  5. 【随笔】借鉴 & KPI式设计

    1. 别人(某成功案例)是这么做的,我们也就这么做吧 刚来组里一会就目睹了需求讨论会上的一场争执,大概就是某产品经理在解释需求解释到后面有些说不通了就说“xxx App是这么做的我觉得我们也可以这样做 ...

  6. Linux输入设备详解

    <什么是Linux输入设备> ➤简介      Linux输入设备总类繁杂,常见的包括有按键.键盘.触摸屏.鼠标.摇杆等等,他们本身就是字符设备,而linux内核将这些设备的共同性抽象出来 ...

  7. 10.23 正睿停课训练 Day7

    目录 2018.10.23 正睿停课训练 Day7 A 矩形(组合) B 翻转(思路) C 求和(思路 三元环计数) 考试代码 B1 B2 C 2018.10.23 正睿停课训练 Day7 期望得分: ...

  8. android:四种基本布局

    一个丰富的界面总是要由很多个控件组成的,那我们如何才能让各个控件都有条不紊地 摆放在界面上,而不是乱糟糟的呢?这就需要借助布局来实现了.布局是一种可用于放置很 多控件的容器,它可以按照一定的规律调整内 ...

  9. JVM Debugger Memory View for IntelliJ IDEA

    Posted on August 19, 2016 by Andrey Cheptsov Every day we try to find new ways to improve developer ...

  10. Nginx升级

    Ubuntu14.04默认的安装源中安装的是Nginx 1.4.6 echo deb http://nginx.org/packages/ubuntu/ trusty nginx >> / ...