P5241 序列

挺神仙的一题

看看除了dp好像没什么其他办法了

想着怎么构个具体的图出来,然鹅不太现实。

于是我们想办法用几个参数来表示dp数组

加了几条边肯定要的吧,于是加个参数$i$表示已加了$i$条边

这显然是不够的。于是我们又想:强连通分量.....连通块.......

于是加个$j$表示还有$j$个强连通分量

于是dp数组为$f[i][j]$

这是我们发现一个问题,状态$f[i][j]$不一定是合法的。

那dp不就GG了吗

再次撕烤,我们发现每次加上的边无非就3种情况:

1.把2个强连通分量(或链)连成一条链

2.在某个强连通分量中瞎连(没啥用)

3.在1条链上的某点向回连,形成一个环,缩成一个新强连通分量(可以减少任意个强连通分量

我们设$k-1$条边(dp数组下标$k$为正数较好处理)投入到第3种情况

要生成剩下$j$个强连通的情况,我们最少投入$n-j$条边用于第1种情况

所以$n-j+(k-1)<=i$

我们又发现,要生成剩下$j$个强连通的情况,我们最多共投入的边数$i$是有限制的

最多情况就是1个块有$n-j+1$个点,剩下$j-1$个块只有1个点,蓝后大块每个点连$n-1$条边,小块互相之间弱连通

那么最大边数为$(n-j+1)*(n-1)+(j-2+j-3+j-4+...+1)=(n-j+1)*(n-1)+(j-1)*(j-2)/2$

所以$i<=(n-j+1)*(n-1)+(j-1)*(j-2)/2$

总结一下,即设$f[i][j][k]$表示到第$i$条边,有$j$个强连通分量,$k-1$条边向回连的方案数

限制条件:

$n-j+(k-1)<=i$

$i<=(n-j+1)*(n-1)+(j-1)*(j-2)/2$

转移:

$f[i][j][k]+=f[i-1][j][k]$(第2种情况)

$f[i][j][k]+=\sum_{h=j+1}^{n}f[i-1][h][k-1]$

显然是可以滚动数组+前缀和优化的辣

然鹅复杂度还是太高,主要因为k很麻烦

仔细观察k,发现

$n-j+(k-1)<=i$

$k<=i+j-n+1$

发现$i>=2n$时k总是合法的

于是我们就可以愉快地缩成2维辣

#include<iostream>
#include<cstdio>
#include<cstring>
#define rint register int
using namespace std;
inline int Min(int a,int b){return a<b?a:b;}
const int mod=1e9+;
inline int Md(int x){return x<mod?x:x-mod;}
#define N 405
int n,f[][N][N],sf[][N][N],g[][N],sg[N][N],lim[N],ans[N*N];
int main(){
scanf("%d",&n); int tn=Min(n*(n-),n<<),w=;
for(rint j=;j<=n;++j) lim[j]=(n-j+)*(n-)+(j-)*(j-)/;
f[][n][]=ans[]=;
for(rint j=;j<=n;++j) sf[][n][]=;
for(rint i=;i<=tn;++i,w^=){
for(rint j=;j<=n;++j)
for(rint k=;k<=n;++k)
f[w][j][k]=;
for(rint j=;j<=n;++j) if(lim[j]>=i)
for(rint k=;k<=n;++k) if(i-(k-)>=n-j)
f[w][j][k]=Md(f[w^][j][k]+sf[w^][j+][k-]);
for(rint j=n;j;--j)
for(rint k=;k<=n;++k){
sf[w][j][k]=Md(sf[w][j+][k]+f[w][j][k]);
ans[i]=Md(ans[i]+f[w][j][k]);
}
}w=;
for(rint j=;j<=n;++j)
for(rint k=;k<=n;++k)
g[][j]=Md(g[][j]+f[][j][k]);
for(rint j=n;j;--j) sg[][j]=Md(sg[][j+]+g[][j]);//降维
for(rint i=tn+;i<=n*(n-);++i,w^=){
for(rint j=;j<=n;++j) g[w][j]=;
for(rint j=;j<=n;++j) if(lim[j]>=i)
g[w][j]=Md(g[w^][j]+sg[w^][j+]);
for(rint j=n;j;--j){
sg[w][j]=Md(sg[w][j+]+g[w][j]);
ans[i]=Md(ans[i]+g[w][j]);
}
}
for(rint i=;i<=n*(n-);++i) printf("%d ",ans[i]);
return ;
}

P5241 序列(滚动数组+前缀和优化dp)的更多相关文章

  1. Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)

    题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...

  2. LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP

    题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...

  3. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  4. HDU-1024 Max Sum Plus Plus 动态规划 滚动数组和转移优化

    题目链接:https://cn.vjudge.net/problem/HDU-1024 题意 给n, m和一个序列,找m个不重叠子串,使这几个子串内元素和的和最大. n<=1e6 例:1 3 1 ...

  5. CF601C Kleofáš and the n-thlon(期望+前缀和优化dp)

    传送门 解题思路 要求这个人的排名,我们可以先求出某个人比他排名靠前的概率,然后再乘上\(m-1\)即为答案.求某个人比他排名靠前可以用\(dp\),设\(f[i][j]\)表示前\(i\)场比赛某人 ...

  6. CDOJ 1307 ABCDE 前缀和优化dp

    ABCDE 题目连接: http://acm.uestc.edu.cn/#/problem/show/1307 Description Binary-coded decimal (BCD) is a ...

  7. bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...

  8. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  9. 5.19 省选模拟赛 小B的夏令营 概率 dp 前缀和优化dp

    LINK:小B的夏令营 这道题是以前从没见过的优化dp的方法 不过也在情理之中. 注意读题 千万不要像我这个sb一样 考完连题意都不知道是啥. 一个长方形 要求从上到下联通的概率. 容易发现 K天只是 ...

随机推荐

  1. socket发送http报文的疑惑(求高手指点一二)

    给8080或80端口的服务端(自己写的serverSocket服务端)发送字符串,此字符串按照http协议拼接而成,既是所谓的http报文.服务端接受成功.如果在报头与消息体之间少了“\r\n\r\n ...

  2. jenkins配置详解之——执行者数量

    jenkins上的执行者数量的设置并不是随意设置的,位置如下: 他是跟cpu核数密切相关的,原则上是不能超过cpu的核数的, 如何查看cpu的核数呢,命令如下: # 查看物理CPU个数cat /pro ...

  3. case insensitive in php

    date: 2017-07-27 PHP的命名空间是否区分大小写? 结论:不区分大小写,与类名一样(不区分大小写). 不区分大小写的包括 函数名 方法名 类名 控制语句(if, else, for, ...

  4. 用xshell 连接docker Linux服务器

    用xshell 连接docker Linux服务器

  5. 关于设置cookie同源,axios请求加上cookie

    一个有cookie  一个没有 这是为啥!! axios都设置了的为true允许携带cookie 大佬答疑解惑:==>cookie同源域名才有啊,在Application看看cookie的pat ...

  6. cocos2d-x JS 纯代码加载播放plist与png动画

    var cache = cc.spriteFrameCache; cache.addSpriteFrames(plist, png); var frames = []; for (var i = 1; ...

  7. cocos2dx 3.x(for 循环让精灵从中间往上下两边排列)

    最近很多游戏都喜欢房卡类的游戏,就是创建房间时(),选择玩法与规则,今天耗费2小时处理这个数学问题:例如选择规则两条,则背景框中间显示两条规则,若选择三条,则背景框中间显示三条规则与玩法,依次从中间往 ...

  8. Asp.netCore之安装centos7 资料收集

    虚拟机的安装和centos的安装看博友的文章:https://www.cnblogs.com/zhaopei/p/netcore.html ifconfig 在centons中用终端写命令比较费劲,可 ...

  9. 读书笔记_Effective C++_条款一:将C++视为一个语言联邦

    C++起源于C,最初的名称为C with Classes,意为带类的C语言,然而,随着C++的不断发展和壮大,在很多功能上已经远远超越了C,甚至一些C++程序员反过来看C代码会觉得不习惯. C++可以 ...

  10. 安装FusionInsight

    1.在华为平台上下载整体客户端,不建议下载单个组件客户端,后期关联测试还是要装上的.   2.下载后需要将服务器上的客户端拷贝到本地.打开xShell,新建会话,登陆本地虚拟机上的Linux系统(19 ...