fjwc2019 D1T1 全连(dp+树状数组)
显然我们可以得出一个$O(n^2)$的dp方程
记$f(i)$为取到第$i$个音符时的最大分数,枚举下一个音符的位置$j$进行转移。
蓝后我们就可以用树状数组存下$f(i)$的最大值,每次用$logn$的复杂度每次询问$j=1 \rightarrow i-t[i]$中最大$f(j)$值。
酱紫复杂度就变成了$O(nlogn)$
对于$f(i)$在位置$i+t[i]$之后才能作为转移的一个选择的问题,我们可以打一个延迟标记(ping函数),用类似链式前向星的结构存储(就像存边一样)。
每次到达一个$k$,就把每个从$k$开始起转移作用的$f(i)加入树状数组。
#include<cstdio>
typedef long long ll;
ll max(ll a,ll b){return a>b?a:b;}
void read(ll &x){
char c=getchar();x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+(c^),c=getchar();
}
#define N 1000005
ll s[N],a[N],t[N],f[N],ans;
int n,cnt,hd[N],nxt[N],ed[N],poi[N];
void add(int x,ll v){for(;x<=n;x+=x&-x)s[x]=max(s[x],v);}
ll ask(int x){ll re=;for(;x;x-=x&-x)re=max(re,s[x]);return re;}
void ping(int x,int y){
nxt[ed[x]]=++cnt; hd[x]=hd[x]?hd[x]:cnt;
ed[x]=cnt; poi[cnt]=y;
}
int main(){
freopen("fc.in","r",stdin);
freopen("fc.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;++i) read(t[i]);
for(int i=;i<=n;++i) read(a[i]);
for(int i=;i<=n;++i){
for(int j=hd[i];j;j=nxt[j]) add(poi[j],f[poi[j]]);//f[poi[j]]从i开始可以作为一个选择,加入树状数组
f[i]=a[i]*t[i];
if(i>t[i]) f[i]+=ask(i-t[i]);//查询1~i-t[i]的最优选择
if(i+t[i]<=n) ping(i+t[i],i);//把f(i)加入位置i+t[i]的标记中
ans=max(ans,f[i]);
}printf("%lld",ans);
return ;
}
fjwc2019 D1T1 全连(dp+树状数组)的更多相关文章
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
- HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 Find the nondecreasing subsequences ...
- ccpc_南阳 C The Battle of chibi dp + 树状数组
题意:给你一个n个数的序列,要求从中找出含m个数的严格递增子序列,求能找出多少种不同的方案 dp[i][j]表示以第i个数结尾,形成的严格递增子序列长度为j的方案数 那么最终的答案应该就是sigma( ...
- HDU 2838 (DP+树状数组维护带权排序)
Reference: http://blog.csdn.net/me4546/article/details/6333225 题目链接: http://acm.hdu.edu.cn/showprobl ...
- [poj3378] Crazy Thairs (DP + 树状数组维护 + 高精度)
树状数组维护DP + 高精度 Description These days, Sempr is crazed on one problem named Crazy Thair. Given N (1 ...
随机推荐
- SQL数据库存储过程
添加修改 create PROCEDURE sp_insert_1(pid int,pname varchar(200),page varchar(200),pscore int,out code i ...
- hiho #1014 : Trie树(模板)
Trie树 [题目链接]Trie树 &题意: 输入 输入的第一行为一个正整数n,表示词典的大小,其后n行,每一行一个单词(不保证是英文单词,也有可能是火星文单词哦),单词由不超过10个的小写英 ...
- 三级菜单(低端版VS高端版)
>>>低端版 menu={'山西': {'太原': {'迎泽':['柳巷','五一广场','太原站'], '小店':['山西财经大学','山西大学','武宿机场'], '晋源':[' ...
- efcore从数据库快速生成实体及context
有些项目开发时先建立数据库,再用codefirst来书写entity和EntityConfiguration,比较耗费功夫. 1.在vs2017中新建个asp.net core的web项目,或者其他项 ...
- java中二维数组的复制克隆
https://blog.csdn.net/qq_37232304/article/details/79950022
- 16. 3Sum Closest(双指针)
Given an array nums of n integers and an integer target, find three integers in nums such that the s ...
- 代码审查Code Review
代码审查清单 常规项 代码能够工作么?它有没有实现预期的功能,逻辑是否正确等. 所有的代码是否简单易懂? 代码符合你所遵循的编程规范么?这通常包括大括号的位置,变量名和函数名,行的长度,缩进,格式和注 ...
- 【2017-04-17】类库、通用变量、is和as、委托
类库dll文件,里边有很多被编译后的C#代码,不可阅读,不可修改,只能调用 1.类库创建 新建项目为类库,类库文件编写完成后,选择生成—生成解决方案,在debug文件夹下找到dll文件 2.类库引用 ...
- 20165305 实验四:Android程序设计
实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android.组件.布局管理器的使用: 掌握Android中事件处理机制. Android Studio安装 ...
- Java注解的原理
自Java5.0版本引入注解之后,它就成为了Java平台中非常重要的一部分.开发过程中,我们也时常在应用代码中会看到诸如@Override,@Deprecated这样的注解.这篇文章中,我将向大家讲述 ...