基于tensorflow搭建一个神经网络
一,tensorflow的简介
Tensorflow是一个采用数据流图,用于数值计算的 开源软件库。节点在图中表示数字操作,图中的线 则表示在节点间相互联系的多维数据数组,即张量 它灵活的架构让你可以在多种平台上展开计算,例 如台式计算机中的一个或多个CPU(或GPU), 服务器,移动设备等等。Tensorflow最初由Google 大脑小组的研究员和工程师们开发出来,用于机器 学习和深度神经网络方面的研究,但这个系统的通 用性使其也可广泛用于其他计算领域。
二,tensorflow的架构
TensorFlow的系统结构以C API为界,将整个系统分为「前端」和「后端」两个子系统。
前端系统 提供多语言编程环境,提供统一的编程模型支撑用户构造计算图 通过Session的形式,连接TensorFlow后端的「运行时」,启动计算图的执行过程。
后端系统 提供运行时环境,负责执行计算图。
三,tensorflow的简单实现步骤
1,定义一个神经层的函数: 神经层里常见的参数通常有weights、biases和激励函数。
2,导入数据 构建所需的数据。
3,搭建网络 先定义隐藏层,再定义输出层,计算预测值和真实值的误差
4,训练 给定次数,让机器开始学习。
5,结果可视化
代码如下:
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np tf.set_random_seed(1)
np.random.seed(1)
#构建所需数据
x = np.linspace(-1, 1, 100)[:, np.newaxis]
noise = np.random.normal(0, 0.1, size=x.shape)
y = np.power(x, 2) + noise
#输入x和y
tf_x = tf.placeholder(tf.float32, x.shape)
tf_y = tf.placeholder(tf.float32, y.shape)
# 搭建神经网络
#隐藏层
l1 = tf.layers.dense(tf_x, 10, tf.nn.relu)
#输出层
output = tf.layers.dense(l1, 1)
loss = tf.losses.mean_squared_error(tf_y, output)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5)
train_op = optimizer.minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
plt.ion()
#训练
for step in range(100):
_, l, pred = sess.run([train_op, loss, output], {tf_x: x, tf_y: y})
if step % 5 == 0:
plt.cla()
plt.scatter(x, y)
plt.plot(x, pred, 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % l, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
运行结果如图:

四,总结
以上为tensorflow的简单介绍,算是基础入门的案例了。往后学就是分类学习,CNN卷积神经网络,RNN循环神经网络了。
基于tensorflow搭建一个神经网络的更多相关文章
- 基于 Express 搭建一个node项目 - 起步
一,如何基于 Express 搭建一个node项目 什么是Express 借用官方的介绍,Express是一个基于Node.js平台的极简.灵活的web应用开发框架,它提供了一系列强大的特性,帮助你创 ...
- 如何基于Go搭建一个大数据平台
如何基于Go搭建一个大数据平台 - Go中国 - CSDN博客 https://blog.csdn.net/ra681t58cjxsgckj31/article/details/78333775 01 ...
- 用TensorFlow搭建一个万能的神经网络框架(持续更新)
我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮 ...
- 手写一个类SpringBoot的HTTP框架:几十行代码基于Netty搭建一个 HTTP Server
本文已经收录进 : https://github.com/Snailclimb/netty-practical-tutorial (Netty 从入门到实战:手写 HTTP Server+RPC 框架 ...
- Tensorflow搭建卷积神经网络识别手写英语字母
更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集 ...
- 基于TensorFlow的循环神经网络(RNN)
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一 ...
- 基于jenkins搭建一个持续集成服务器
1 引言 1.1 编写目的 指导质量管理部,业务测试组同事进行Jenkins环境部署,通过Jenkins解决测试环境不可控,开发测试环境不一致等问题. 1.2 使用对象 质量管理部.基础研发部,集成部 ...
- tensorflow实现一个神经网络简单CNN网络
本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测. 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist = input_da ...
- netty实现消息中心(二)基于netty搭建一个聊天室
前言 上篇博文(netty实现消息中心(一)思路整理 )大概说了下netty websocket消息中心的设计思路,这篇文章主要说说简化版的netty聊天室代码实现,支持群聊和点对点聊天. 此demo ...
随机推荐
- Android ROM资源文件存放位置
位于目录:framework/core/res/res /frameworks/base/core/res/res/values/public.xml 上面的文件中公开了上层(也就是第三方应用或者系统 ...
- Mybatis入门学习笔记
1.定义别名 在sqlMapConfig.xml中,编写如下代码: <!-- 定义别名 --> <typeAliases> <!-- type: 需要映射的类型 alia ...
- 操作系统笔记(六)页面置换算法 FIFO法 LRU最近最久未使用法 CLOCK法 二次机会法
前篇在此: 操作系统笔记(五) 虚拟内存,覆盖和交换技术 操作系统 笔记(三)计算机体系结构,地址空间.连续内存分配(四)非连续内存分配:分段,分页 内容不多,就不做index了. 功能:当缺页中断发 ...
- Box-Muller 与 ziggurat
1. Ziggurat 算法与 Box-muller 算法的效率比较 2. Box-Muller a. 一般形式 因函数调用较多,速度慢,当u接近0时存在数值稳定性问题 先假设. 用Box-Mulle ...
- ubuntu14.04下 Kinect V2+Ros接口安装
1. 首先git下载代码,放到主文件夹下面 git clone https://github.com/OpenKinect/libfreenect2.git 2. 然后安装依赖项如下,最好事先编译安装 ...
- 搭建Modelsim SE仿真环境-使用do文件仿真
本章我们介绍仿真环境搭建是基于Modelsim SE的.Modelsim有很多版本,比如说Modelsim-Altera,但是笔者还是建议大家使用Modelsim-SE,Modelsim-Altera ...
- 解析如何在C语言中调用shell命令的实现方法【转】
本文转自:http://www.jb51.net/article/37404.htm 1.system(执行shell 命令)相关函数 fork,execve,waitpid,popen表头文件 #i ...
- centos6.5 nfs实时共享
一.什么时NFS NFS(Network File System)——网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,NF ...
- 【转】new对象时,类名后加括号和不加括号的区别
请看测试代码: #include <iostream> using namespace std; // 空类 class empty { }; // 一个默认构造函数,一个自定义构造函数 ...
- React-Native 之 网络请求 fetch
前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...