BZOJ.4892.[TJOI2017]DNA(后缀自动机/后缀数组)
\(Description\)
给出两个串\(S,T\),求\(T\)在\(S\)中出现了多少次。出现是指。可以有\(3\)次(\(3\)个字符)不匹配(修改使其匹配)。
\(Solution\)
一个套路的做法是构造多项式(CF528D),对每个字符c单独考虑,\(f[i]=[S[i]可匹配c],g[i]=[T[i]==c]\)。
然后\(F=f*g\),可以得到每个位置往后长\(m\)的串中有多少个位置\(S,T\)都匹配了\(c\)。如果某个位置匹配字符数\(\geq m-3\),则以它为左端点的串可行。
FFT/NTT实现,常数好也许能过。
SA做法:枚举\(S\)的每个位置\(i\),设当前匹配\(T\)匹配到\(j\),得到两个串的ht数组后我们可以\(O(1)\)求出\(LCP(suf[i],suf[j])\),直接\(j+=LCP\)就行了。
如果某个位置不匹配,可以至多用\(3\)次机会直接跳过去。所以实际枚举\(j\)的次数只有\(5\)。
复杂度\(O(Tn\log n)\)。
SAM做法:得到parent树后,直接在上面DFS,如果能匹配则走,不能匹配则用一次次数。走了\(m\)步则加上该点的贡献(出现过多少次)。
复杂度\(O(Tn)\)。
还有某种神奇的Hash做法。。好像复杂度比较优。
SAM:
//9224kb 1624ms
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=2e5+5;
struct Suffix_Automaton
{
int n,Ans,tot,las,son[N][4],fa[N],len[N],cnt[N],tm[N],A[N],ref[233];
char s[N];
Suffix_Automaton() {tot=las=1;}
void Insert(int c)
{
int np=++tot,p=las;
len[las=np]=len[p]+1, cnt[np]=1;
for(; p&&!son[p][c]; p=fa[p]) son[p][c]=np;
if(!p) fa[np]=1;
else
{
int q=son[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else
{
int nq=++tot; len[nq]=len[p]+1;
memcpy(son[nq],son[q],sizeof son[q]);
fa[nq]=fa[q], fa[q]=fa[np]=nq;
for(; son[p][c]==q; p=fa[p]) son[p][c]=nq;
}
}
}
void Build()
{
tot=las=1;
ref['A']=0, ref['T']=1, ref['G']=2, ref['C']=3;
memset(tm,0,sizeof tm);//! 你前缀和了→_→
memset(cnt,0,sizeof cnt), memset(son,0,sizeof son);
scanf("%s",s+1); int l=strlen(s+1);
for(int i=1; i<=l; ++i) Insert(ref[s[i]]);
for(int i=1; i<=tot; ++i) ++tm[len[i]];
for(int i=1; i<=l; ++i) tm[i]+=tm[i-1];
for(int i=1; i<=tot; ++i) A[tm[len[i]]--]=i;
for(int i=tot,x=A[i]; i; x=A[--i]) cnt[fa[x]]+=cnt[x];
}
void DFS(int x,int use,int l)
{
if(l==n) return (void)(Ans+=cnt[x]);
for(int i=0; i<4; ++i)
if(son[x][i])
if(ref[s[l]]==i) DFS(son[x][i],use,l+1);
else if(use<3) DFS(son[x][i],use+1,l+1);
}
void Query()
{
scanf("%s",s), n=strlen(s);
Ans=0, DFS(1,0,0), printf("%d\n",Ans);
}
}sam;
int main()
{
int T; scanf("%d",&T);
while(T--) sam.Build(), sam.Query();
return 0;
}
SA:
//19768kb 5976ms(好慢...)
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=2e5+7;
int MAP[233],sa[N],sa2[N],rk[N],tm[N],ht[N],lg2[N],mn[18][N];
char s[N];
void Get_SA(int n)
{
int *x=rk,*y=sa2,m=5;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=MAP[s[i]]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int k=1,p=0; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i];
std::swap(x,y), x[sa[1]]=p=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p:++p;
if(p>=n) break;
}
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int i=1,k=0,p; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
p=sa[rk[i]-1];
while(i+k<=n && p+k<=n && s[i+k]==s[p+k]) ++k;
ht[rk[i]]=k;
}
}
void Init_ST(int n)
{
for(int i=1; i<=n; ++i) mn[0][i]=ht[i];
for(int j=1; j<=lg2[n]; ++j)
for(int i=1; i<=n; ++i)
mn[j][i]=std::min(mn[j-1][i],mn[j-1][i+(1<<j-1)]);
}
inline int LCP(int l,int r)
{
l=rk[l], r=rk[r]; if(l>r) std::swap(l,r);
++l;
int k=lg2[r-l+1];
return std::min(mn[k][l],mn[k][r-(1<<k)+1]);
}
int main()
{
MAP['A']=1, MAP['T']=2, MAP['C']=3, MAP['G']=4, MAP['Z']=5;
lg2[1]=0;
for(int i=2; i<=200005; ++i) lg2[i]=lg2[i>>1]+1;
int T; scanf("%d",&T);
while(T--)
{
int l,n;
scanf("%s",s+1), s[l=strlen(s+1)+1]='Z';
scanf("%s",s+l+1), n=strlen(s+1);
Get_SA(n), Init_ST(n);
int ans=0;
for(int i=1,m=n-l,lim=l-m; i<=lim; ++i)
{
for(int j=1,t=0; t<=3; )
{
if(j>m) {++ans; break;}
else if(s[i+j-1]!=s[l+j]) ++j, ++t;
else j+=LCP(i+j-1,l+j);
}
}
printf("%d\n",ans);
}
return 0;
}
BZOJ.4892.[TJOI2017]DNA(后缀自动机/后缀数组)的更多相关文章
- BZOJ 4892 [Tjoi2017]dna 哈希+二分
自己简直是傻死了...对于位置想错了... 二分出来的是LCP长度$+1$,即每一次二分出来的最后一个点都是失配的,而就算失配也会跳过这个点:所以当$k<=3$且模式串$s2$的指针$>l ...
- poj 1743 Musical Theme 后缀自动机/后缀数组/后缀树
题目大意 直接用了hzwer的题意 题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题."主题&qu ...
- [模板] 后缀自动机&&后缀树
后缀自动机 后缀自动机是一种确定性有限状态自动机, 它可以接收字符串\(s\)的所有后缀. 构造, 性质 翻译自毛子俄罗斯神仙的博客, 讲的很好 后缀自动机详解 - DZYO的博客 - CSDN博客 ...
- bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】
建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...
- 回文树&后缀自动机&后缀数组
KMP,扩展KMP和Manacher就不写了,感觉没多大意思. 之前感觉后缀自动机简直可以解决一切,所以不怎么写后缀数组. 马拉车主要是通过对称中心解决问题,有的时候要通过回文串的边界解决问题 ...
- SPOJ705 Distinct Substrings (后缀自动机&后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)
Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...
- SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组
SUBLEX - Lexicographical Substring Search Little Daniel loves to play with strings! He always finds ...
- UVA - 11107 Life Forms (广义后缀自动机+后缀树/后缀数组+尺取)
题意:给你n个字符串,求出在超过一半的字符串中出现的所有子串中最长的子串,按字典序输出. 这道题算是我的一个黑历史了吧,以前我的做法是对这n个字符串建广义后缀自动机,然后在自动机上dfs,交上去AC了 ...
随机推荐
- JavaScript对象复制(二)
<script> function copy(a) { ret = {}; for (sth in a) { temp = a[sth]; if (temp instanceof Arra ...
- TabCtrl使用
TabCtrl使用 0x1 新建子页面 插入三个对话框,ID分别为:IDD_PAGE_FILE.IDD_PAGE_NETWORK.IDD_PAGE_PROCESS 工具箱-[属性]-[Style]设置 ...
- Django 利用管理器实现文章归档
Django管理器:class Manager 管理器是Django的模型进行数据库查询的接口,Django应用的每个模型都拥有至少一个管理器.默认情况下,Django为每个模型类添加一个名为obje ...
- php数据库的增删改查
1.查询: 数据的显示,这里就可以嵌入php来进行数据的输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...
- gunicorn+flask使用与配置
gun.conf的内容 import os bind = '10.1.240.222:5000' workers = 4 backlog = 2048 worker_class = "syn ...
- 一台电脑,两个及多个git账号配置
1. 生成两[三]个ssh公钥私钥 方法参照:http://www.cnblogs.com/fanbi/p/7772812.html第三步骤 假定其中一个是id_rsa, 另一个时id_rsa_two ...
- ORACLE与SQLSERVER数据转换
前言: 将SQLServer数据库中的表和数据全量导入到Oracle数据库,通过Microsoft SqlServer Management Studio工具,直接导入到oracle数据库,免去了生成 ...
- IE 浏览器 GET 请求缓存问题
问题描述 IE 浏览器(笔者使用的版本是 IE 11)在发起 GET 请求,当参数一样时,浏览器会直接使用缓存数据,这样对于实时性有要求的数据不适用.笔者在使用 Chrome 或 FF 时发现浏览器并 ...
- mysql8.0CTE实现递归查询
+----+----------+--------------+| ID | ParentID | name |+----+----------+--------------+| 1 ...
- confusion_matrix(混淆矩阵)
作者:十岁的小男孩 凡心所向,素履可往 目录 监督学习—混淆矩阵 是什么?有什么用?怎么用? 非监督学习—匹配矩阵 混淆矩阵 矩阵每一列代表预测值,每一行代表的是实际的类别.这个名字来源于它可以非常容 ...