[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
题目大意:
给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长。求最长长度。
思路:
一定存在一种最优方案使得不确定的都选上(考虑新选上一个不确定的数,最多会使一个已确定的数失效),因此令\(a_i=a_i-cnt\)(\(cnt\)为之前不确定的数的个数),求LIS后加上\(cnt\)即可。
源代码:
#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) neg|=ch=='-';
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return neg?-x:x;
}
inline char getupper() {
register char ch;
while(!isupper(ch=getchar()));
return ch;
}
const int N=1e5+1;
int a[N],tmp[N];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=tmp[0];p+=lowbit(p)) {
val[p]=std::max(val[p],x);
}
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) {
ret=std::max(ret,val[p]);
}
return ret;
}
};
FenwickTree bit;
int main() {
const int n=getint();
int cnt=0;
for(register int i=1;i<=n;i++) {
if(getupper()=='K') {
a[i]=tmp[i-cnt]=getint()-cnt;
} else {
a[i]=INT_MAX;
cnt++;
}
}
std::sort(&tmp[1],&tmp[n-cnt]+1);
tmp[0]=std::unique(&tmp[1],&tmp[n-cnt]+1)-&tmp[1];
for(register int i=1;i<=n;i++) {
if(a[i]==INT_MAX) continue;
a[i]=std::lower_bound(&tmp[1],&tmp[tmp[0]]+1,a[i])-tmp;
bit.modify(a[i],bit.query(a[i]-1)+1);
}
printf("%d\n",bit.query(tmp[0])+cnt);
return 0;
}
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列的更多相关文章
- [bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是 ...
- bzoj4282慎二的随机数列
海带头又上线了QwQ~ 这是一个奇怪的lis问题 显然一定存在一种最优答案使所有辨认不清的数都在答案中. [为什么呢]因为你完全可以用一个'N'来替换一个'K'啊QwQ~ 那么在选完所有'N'之后,一 ...
- BZOJ4282 : 慎二的随机数列
首先在开头加上-inf,结尾加上inf,最后答案减2即可. 设s[i]为i之前未知的个数,f[i]为以i结尾的LIS,且a[i]已知,那么: f[i]=max(f[j]+min(s[i]-s[j],a ...
- bzoj4282 慎二的随机数列 树状数组求LIS + 构造
首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点 ...
- 【BZOJ4282】慎二的随机数列 乱搞
[BZOJ4282]慎二的随机数列 Description 间桐慎二是间桐家著名的废柴,有一天,他在学校随机了一组随机数列, 准备使用他那强大的人工智能求出其最长上升子序列,但是天有不测风云,人有旦夕 ...
- 【bzoj4282】慎二的随机数列
扯几句题外的,最近在看Fate/StayNight,对此人毫无好感…… 每次减一下当前可辨认数,然后随意dp一个LIS,最后记得加回去就好. #include<bits/stdc++.h> ...
- BZOJ 4282(慎二的随机数列
题解: 网上题解还没看 我的方法是用平衡树维护一个单调栈 由于N用了一定是赚的 所以它的作用是让f[i+1]=f[i]+1 这个是可以记录的 就跟noip蚯蚓那题一样 然后插入一个值的时候查询前面的最 ...
- [BZOJ5427]最长上升子序列
考虑O(n log n)的LIS求法,dp[i]表示到目前为止,长度为i的LIS的末尾最小是多少. 当当前数确定时直接用LIS的求法更新dp数组,当不确定时,由于这个数可以是任意数,所以可以接在任意上 ...
- 动态规划———最长公共子序列(LCS)
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...
随机推荐
- VS2013+Win10+opencv3.0配置(包括opencv2.4.10版本)
在win下配置opencv3.0.0还是比较简单的,这里简单说一下配置过程:参考链接:http://blog.csdn.net/u010009145/article/details/50756751 ...
- Linux内存管理6---伙伴算法与slab
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...
- jenkins checkstyle:local variable hides a field
源代码: 1 2 3 4 5 6 7 8 //应用上下文 private static ApplicationContext applicationContext; public static voi ...
- cacti系列(一)之cacti的安装及配置监控mysql服务
简介 Cacti是通过 snmpget来获取数据,使用 RRDtool绘画图形,而且你完全可以不需要了解RRDtool复杂的参数.它提供了非常强大的数据和用户管理功能,可以指定每一个用户能查看树状结构 ...
- 转载:configure执行流程(1.5.2)《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19619.html 我们看到configure命令支持非常多的参数,读者可能会好奇它在执行时到底做了哪些事情,本节将通过解析confi ...
- Android命令Monkey压力测试,详解
一.Monkey 是什么?Monkey 就是SDK中附带的一个工具. 二.Monkey 测试的目的?:该工具用于进行压力测试. 然后开发人员结合monkey 打印的日志 和系统打印的日志,结局测试中出 ...
- python3内存存储几种数据类型对差异
列表,元组,集合,字典几种数据类型差异 列表: list=[0,1,'a'] 元组:list=(0,1,'a') 集合 :list=[0,1,'a'] 字典:list={name:'tom',age: ...
- php时间戳与日期转换
日期转换为时间戳 PHP 提供了函数可以方便的将各种形式的日期转换为时间戳,该类函数主要是: strtotime():将任何英文文本的日期时间描述解析为时间戳. mktime():从日期取得时间戳. ...
- vue2之 missing param for named route "xxxx"
场景: 解决方法:可以做的是将其包含router-link在适当的位置v-if,以便在您的异步数据实际到达之前不会尝试渲染. html代码: <div id="app" cl ...
- java多线程快速入门(三)
通过实现Runnable接口实现多线程 package com.cppdy; //通过实现Runnable接口实现多线程 class MyThread1 implements Runnable{ @O ...