经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。 
  Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢? 

Input包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。 
Output对于每组数据,输出一个数,到达目标需要的最少的移动数。 
Sample Input

1
3
12

Sample Output

1
5
81
变体汉诺塔
    问题描述:在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)
     些时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1(证明见再议汉诺塔一);
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
第(3)步结束后任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=;
int f[];
void Init(){
f[]=; f[]=;
for(int i=;i<;i++){
int minx=INF;
for(int x=;x<i;x++)
if(*f[x]+pow(,i-x)-<minx)
minx=*f[x]+pow(,i-x)-;
f[i]=minx;
}
}
int main(){
int n;
Init();
while(~scanf("%d",&n)){
printf("%d\n",f[n]);
}
return ;
}

HDU 1207 汉诺塔II (递推)的更多相关文章

  1. HDU 1207 汉诺塔II (找规律,递推)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1207 汉诺塔II Time Limit: 2000/1000 MS (Java/Others)     ...

  2. hdu 1207 汉诺塔II (DP+递推)

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  3. HDU 2077 汉诺塔IV (递推)

    题意:... 析:由于能最后一个是特殊的,所以前n-1个都是不变的,只是减少了最后一个盘子的次数,所以根据上一个题的结论 答案就是dp[n-1] + 2. 上一题链接:http://www.cnblo ...

  4. HDU 2064 汉诺塔III (递推)

    题意:.. 析:dp[i] 表示把 i 个盘子搬到第 3 个柱子上最少步数,那么产生先把 i-1 个盘子搬到 第3个上,再把第 i 个搬到 第 2 个上,然后再把 i-1 个盘子, 从第3个柱子搬到第 ...

  5. HDU 1207 汉诺塔II (简单DP)

    题意:中文题. 析:在没有第四个柱子时,把 n 个盘子搬到第 3 个柱子时,那么2 ^ n -1次,由于多了一根,不知道搬到第四个柱子多少根时是最优的, 所以 dp[i] 表示搬到第4个柱子 i 个盘 ...

  6. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  7. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  8. HDU 2064 汉诺塔III (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...

  9. 汉诺塔系列问题: 汉诺塔II、汉诺塔III、汉诺塔IV、汉诺塔V、汉诺塔VI

    汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单, ...

随机推荐

  1. 显示隐藏火车头快捷键Ctrl+t

    今天ytkah在使用火车头的时候也使用了Photoshop,用了组合键Ctrl+t来进行调整图层的大小,可能多按了几次的缘故吧,触发了火车头的隐藏老板键,找了半天也找到,因为当时编辑的任务还没保存,不 ...

  2. vc让界面保持最上层

    vc让界面保持最上层.事实上就一个函数就ok了, ::SetWindowPos(AfxGetMainWnd()->m_hWnd,HWND_TOPMOST,-1,-1,-1,-1,0);

  3. windows无法安装到这个磁盘。选中的磁盘采用GPT分区形式 Windows 检测到 EFI 系统分区格式化为 NTFS。将 EFI 系统分区个数化为 FAT32,然后重新启动安装

    win10安装问题解决 问题 1.windows无法安装到这个磁盘.选中的磁盘采用GPT分区形式 解决方法: 1.bios,更改 uefi/legacy boot 为ueei only 后面可以安装了 ...

  4. dxRangeTrackBar使用教程

    Properties: Max:最大值 Min:最小值 Frequency:设置刻度值多大值显示PageSize:选择时跳动的区域大小 SelectionColor:选择区域颜色 ShowSelect ...

  5. 网络传输--TCP

    TCP网络编程 一.TCP简介 二.TCP网络程序--客户端 三.TCP网络程序--服务端 四.TCP知识总结 五.文件下载案例 六.3次握手和4次挥手 回到顶部 一.TCP简介TCP 1.TCP的简 ...

  6. field-symbols: <ATTR> type ANY.

    field-symbols: type ANY. * importing iv_root_list type refer to if_genil_cont_root_objectlist DATA l ...

  7. [py]数据结构和算法-冒泡排序

    用Python实现的数据结构与算法 数据结构和算法可以培养一个人的逻辑思维(推荐几本书) 逻辑思维培养 严蔚敏的数据结构(排序 查找 列表 堆栈 队列 树的简单部分) 大话数据结构 数据结构与算法分析 ...

  8. 【LeetCode每天一题】Find First and Last Position of Element in Sorted Array(找到排序数组中指定元素的开始和结束下标)

    Given an array of integers nums sorted in ascending order, find the starting and ending position of ...

  9. 【漏洞公告】高危:Windows系统 SMB/RDP远程命令执行漏洞

    2017年4月14日,国外黑客组织Shadow Brokers发出了NSA方程式组织的机密文档,包含了多个Windows 远程漏洞利用工具,该工具包可以可以覆盖全球70%的Windows服务器,为了确 ...

  10. Golang package

    今天,灵感一现:不能一个文件干到底吧,那要是工程大了怎么办? 答案很简单,“包”啊 GO里的包,看起来很简单,但又不简单 一开始,我想当然的以为就是include 路径一样的问题 事实是,GO以GOP ...